Matching Items (86)
Filtering by

Clear all filters

DescriptionA novel and unconventional approach for delivering a eukaryotic apoptosis factor, TNF-related apoptosis-inducing ligand (TRAIL), to cancer cells within and around necrotizing tumors by utilizing a S. Typhimurium purine requiring auxotroph as a biological vector to develop two anticancer therapies with multiple modality and broad economic feasibility.
ContributorsKoons, Andrew (Author) / Curtiss, Roy (Thesis director) / Lake, Douglas (Committee member) / Janthakahalli, Nagaraj Vinay (Committee member) / Barrett, The Honors College (Contributor)
Created2013-12
137464-Thumbnail Image.png
Description
Historically, the study of cognition has focused on species-specific learning, memory, problem-solving and decision-making capabilities, and emphasis was placed on the few high-performing individuals who successfully completed cognitive tasks. Studies often deemed the success of a small fraction of individuals as suggestive of the cognitive capacity of the entire species.

Historically, the study of cognition has focused on species-specific learning, memory, problem-solving and decision-making capabilities, and emphasis was placed on the few high-performing individuals who successfully completed cognitive tasks. Studies often deemed the success of a small fraction of individuals as suggestive of the cognitive capacity of the entire species. Recently though, interest in individual variation in cognitive ability within species has increased. This interest has emerged concomitantly with studies of variation in animal personalities (i.e. behavioral syndromes). Cognitive ability may be closely tied to personality because the mechanisms by which an individual perceives and uses environmental input (cognition) should influence how that individual consistently responds to various ecological demands (personality). However, empirical support for links between animal cognition and behavioral syndromes is currently lacking. I examined individual variation in cognition and personality in male veiled chameleons, Chamaeleo calyptratus. I considered three axes of personality (aggression, activity, and exploratory behavior) and cognition in a foraging context using visual cues − specifically, the ability to associate a color with a food reward. I found that aggression was positively correlated with the proportion of correct choices and number of consecutive correct choices. Also, one measure of exploration (the number of vines touched in a novel environment) was correlated negatively with the proportion of correct choices and positively with the number of consecutive incorrect decisions. My investigation suggests that more aggressive, less exploratory chameleons were more successful learners, and that there exists a shared pathway between these personality traits and cognitive ability.
ContributorsBruemmer, Sarah Adele (Author) / McGraw, Kevin (Thesis director) / Rutowski, Ronald (Committee member) / Ligon, Russell (Committee member) / Barrett, The Honors College (Contributor) / School of Human Evolution and Social Change (Contributor) / School of Life Sciences (Contributor)
Created2013-05
136668-Thumbnail Image.png
Description
Dental caries also known as tooth decay is a bacterial infection that causes demineralization and destruction of enamel dentin and cementum in the tooth. This bacterium, Streprococcus mutans, feeds on the carbohydrates in the mouth and produces lactic acids that result in dental caries. This thesis discusses the use of

Dental caries also known as tooth decay is a bacterial infection that causes demineralization and destruction of enamel dentin and cementum in the tooth. This bacterium, Streprococcus mutans, feeds on the carbohydrates in the mouth and produces lactic acids that result in dental caries. This thesis discusses the use of plants to produce antibodies, Guy 13 and anti-GTFB to treat this dental disease. We believe these plant-derived antibodies will be effective to treat dental caries and economical to produce.
ContributorsSayegh, Luvenia Crystal (Author) / Chen, Qiang (Thesis director) / Garg, Vikas (Committee member) / Barrett, The Honors College (Contributor) / School of Letters and Sciences (Contributor)
Created2014-12
136429-Thumbnail Image.png
Description
Urbanization exposes wildlife to many unfamiliar environmental conditions, including the presence of novel structures and food sources. Adapting to or thriving within such anthropogenic modifications may involve cognitive skills, whereby animals come to solve novel problems while navigating, foraging, etc. The increased presence of humans in urban areas is an

Urbanization exposes wildlife to many unfamiliar environmental conditions, including the presence of novel structures and food sources. Adapting to or thriving within such anthropogenic modifications may involve cognitive skills, whereby animals come to solve novel problems while navigating, foraging, etc. The increased presence of humans in urban areas is an additional environmental challenge that may potentially impact cognitive performance in wildlife. To date, there has been little experimental investigation into how human disturbance affects problem solving in animals from urban and rural areas. Urban animals may show superior cognitive performance in the face of human disturbance, due to familiarity with benign human presence, or rural animals may show greater cognitive performance in response to the heightened stress of unfamiliar human presence. Here, I studied the relationship between human disturbance, urbanization, and the ability to solve a novel foraging problem in wild-caught juvenile house finches (Haemorhous mexicanus). This songbird is a successful urban dweller and native to the deserts of the southwestern United States. In captivity, finches captured from both urban and rural populations were presented with a novel foraging task (sliding a lid covering their typical food dish) and then exposed to regular periods of high or low human disturbance over several weeks before they were again presented with the task. I found that rural birds exposed to frequent human disturbance showed reduced task performance compared to human-disturbed urban finches. This result is consistent with the hypothesis that acclimation to human presence protects urban birds from reduced cognition, unlike rural birds. Some behaviors related to solving the problem (e.g. pecking at and eying the dish) also differed between urban and rural finches, possibly indicating that urban birds were less neophobic and more exploratory than rural ones. However, these results were unclear. Overall, these findings suggest that urbanization and acclimation to human presence can strongly predict avian response to novelty and cognitive challenges.
ContributorsCook, Meghan Olivia (Author) / McGraw, Kevin (Thesis director) / Bimonte-Nelson, Heather (Committee member) / Weaver, Melinda (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2015-05
149404-Thumbnail Image.png
Description
Ebola hemorrhagic fever (EHF) is a severe and often fatal disease in human and nonhuman primates, caused by the Ebola virus. Approximately 30 years after the first epidemic, there is no vaccine or therapeutic medication approved to counter the Ebola virus. In this dissertation, a geminiviral replicon system was used

Ebola hemorrhagic fever (EHF) is a severe and often fatal disease in human and nonhuman primates, caused by the Ebola virus. Approximately 30 years after the first epidemic, there is no vaccine or therapeutic medication approved to counter the Ebola virus. In this dissertation, a geminiviral replicon system was used to produce Ebola immune complex (EIC) in plant leaves and tested it as an Ebola vaccine. The EIC was produced in Nicotiana benthamiana leaves by fusing Ebola virus glycoprotein (GP1) to the C-terminus of heavy chain of 6D8 monoclonal antibody (mAb), which is specific to the 6D8 epitope of GP1, and co-expressing the fusion with the light chain of 6D8 mAb. EIC was purified by ammonium sulfate precipitation and protein A or protein G affinity chromatography. EIC was shown to be immunogenic in mice, but the level of antibody against Ebola virus was not sufficient to protect the mice from lethal the Ebola challenge. Hence, different adjuvants were tested in order to improve the immunogenicity of the EIC. Among several adjuvants that we used, Poly(I:C), which is a synthetic analog of double-stranded ribonucleic acid that can interact with a Toll-like receptor 3, strongly increased the efficacy of our Ebola vaccine. The mice immunized with EIC co-administered with Poly(I:C) produced high levels of neutralizing anti-Ebola IgG, and 80% of the mice were protected from the lethal Ebola virus challenge. Moreover, the EIC induced a predominant T-helper type 1 (Th1) response, whereas Poly(I:C) co-delivered with the EIC stimulated a mixed Th1/Th2 response. This result suggests that the protection against lethal Ebola challenge requires both Th1 and Th2 responses. In conclusion, this study demonstrated that the plant-produced EIC co-delivered with Poly(I:C) induced strong and protective immune responses to the Ebola virus in mice. These results support plant-produced EIC as a good vaccine candidate against the Ebola virus. It should be pursued further in primate studies, and eventually in clinical trials.
ContributorsPhoolcharoen, Waranyoo (Author) / Mason, Hugh S (Thesis advisor) / Chen, Qiang (Thesis advisor) / Arntzen, Charles J. (Committee member) / Change, Yung (Committee member) / Ma, Julian (Committee member) / Arizona State University (Publisher)
Created2010
136267-Thumbnail Image.png
Description
Rock Doves (Columba livia), also known as pigeons, are a common sight to city dwellers around the world. Often overlooked as urban pests, these birds have intriguing iridescent coloration on their necks that has been the subject of few studies. Previous studies have documented the multimodal reflectance spectra of the

Rock Doves (Columba livia), also known as pigeons, are a common sight to city dwellers around the world. Often overlooked as urban pests, these birds have intriguing iridescent coloration on their necks that has been the subject of few studies. Previous studies have documented the multimodal reflectance spectra of the iridescence and the keratin cortex microstructures responsible for those properties, but do not address questions about the biological context of this coloration. In this study, I explore the factors that affect how this directional signal might appear to intended receivers (assumed to be females). Pigeon neck feathers were obtained from captive-raised birds and measured for reflectance values at numerous angles in the hemisphere above the feather to obtain a directional reflectance distribution. Each feather was mounted individually, and measurements were taken at a consistent location on the feather using a spectrophotometer; the collector was positioned directly above the feather, while we moved the light source in both azimuth and elevation on a Carden arm to simulate changes in pigeon movements during courtship. Depending on the elevation and azimuth of the light source, pigeon neck feathers shift in appearance from green to purple, with an accompanying shift in the location and intensity of reflectance peaks. Additionally, this unique coloration is due to multiple reflectance peaks in the avian vision field between 300 and 700nm. These data coupled with qualitative behavioral observations of Rock Dove courtship inform our understanding of how the color signal is displayed and how it appears to a potential mate; as a female observes the movements in a male courtship display, properties of the iridescence utilize multiple viewing angles to create a dynamic color array.
ContributorsFankhauser, Kaci Lynn (Author) / Rutowski, Ronald (Thesis director) / McGraw, Kevin (Committee member) / McBeath, Michael (Committee member) / Barrett, The Honors College (Contributor) / School of Human Evolution and Social Change (Contributor) / School of Life Sciences (Contributor)
Created2015-05
130886-Thumbnail Image.png
Description
Coronavirus disease 2019 (COVID-19), an illness caused by severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2), has been responsible for significant social and economic
disruption, prompting an urgent search for therapeutic solutions. The spike protein of the virus
has been examined as an immunogenic target because of its role in viral binding and fusion
necessary

Coronavirus disease 2019 (COVID-19), an illness caused by severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2), has been responsible for significant social and economic
disruption, prompting an urgent search for therapeutic solutions. The spike protein of the virus
has been examined as an immunogenic target because of its role in viral binding and fusion
necessary for infection of host cells. Previous studies have identified a recombinant protein
(denoted as S1) that has been shown to potentially induce a neutralizing antibody response by
mimicking the structure of the SARS-CoV-2 spike protein. We have produced the S1 in plants
using agroinfiltration, a plant transformation technique whereby plasmid-containing
Agrobacterium tumefaciens is injected into Nicotiana benthamiana plants, resulting in transfer of
the desired gene from bacteria to plant cells. S1 was expressed to high levels within 5 days of
infiltration, and Western blot analysis showed recognition of the S1 by an anti-S1 antibody.
ELISA results exhibited increased binding activity to anti-S1 with increasing concentrations of
S1, indicating their specific interaction. This ongoing study will demonstrate the potential of a
plant-produced S1 as a vaccine, therapeutic, and diagnostic tool against COVID-19 that is not
only effective, but also cost-efficient and scalable in comparison to conventional mammalian cell
culture production methods.
ContributorsNguyen, Katherine (Author) / Chen, Qiang (Thesis director) / Ghirlanda, Giovanna (Committee member) / Jugler, Collin (Committee member) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2020-12
131473-Thumbnail Image.png
Description
Plant viral vectors have previously been used to produce high expression levels of antibodies and other proteins of interest. By utilizing a transformed Agrobacterium with the vector containing the protein of interest for infiltration, viral vectors can easily reach the plant cells making it an effective form of transient protein

Plant viral vectors have previously been used to produce high expression levels of antibodies and other proteins of interest. By utilizing a transformed Agrobacterium with the vector containing the protein of interest for infiltration, viral vectors can easily reach the plant cells making it an effective form of transient protein expression. For this project two different plant viral vectors were compared; the geminiviral vector derived from Bean yellow dwarf virus (BeYDV) and the MagnICON vector system derived from Tobacco Mosaic Virus(TMV) and Potato Virus X(PVX). E16, an antibody against West Nile virus, has previously been expressed using both systems but expression levels between the systems were not directly compared. Agrobacterium tumefaciens EHA105 cells were transformed with both systems and expression levels of E16 were quantified using ELISAs. Results showed very low expression levels of E16 using the geminiviral vector indicating a need for further investigation into the clone used as previous studies reported much higher expression levels with the system.
ContributorsMurphy, Skylar (Author) / Chen, Qiang (Thesis director) / Jugler, Collin (Committee member) / College of Health Solutions (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131741-Thumbnail Image.png
Description
Mitochondrial methionyl-tRNA-formyltransferase (MTFMT) is essential for mitochondrial protein translation. The MTFMT gene encodes for an enzyme of the same name, which acts to formylate the methionine of mitochondrial Met-tRNA(Met). In Homo sapiens, MTFMT-formylated-tRNA is an initiator and elongator for the synthesis of 13 mitochondrially-encoded proteins in complexes I,

Mitochondrial methionyl-tRNA-formyltransferase (MTFMT) is essential for mitochondrial protein translation. The MTFMT gene encodes for an enzyme of the same name, which acts to formylate the methionine of mitochondrial Met-tRNA(Met). In Homo sapiens, MTFMT-formylated-tRNA is an initiator and elongator for the synthesis of 13 mitochondrially-encoded proteins in complexes I, III and IV of the ETC. To understand this mechanism, it is necessary to perform a comprehensive analysis of energy metabolism and oxidative phosphorylation (OXPHOS) among impacted patients. Alterations to this gene vary, with the most documented as a single-splice-site mutation (c.626C>T). Here, we discuss MTFMT involvement in mitochondrial protein translation and neurodegenerative disorders, such as Leigh Syndrome and combined OXPHOS deficiency, in two families. We aim to delineate the impact of OXPHOS dysfunction in patients presenting with MTFMT mutation.
ContributorsChain, Kelsey (Author) / Chen, Qiang (Thesis director) / Rangasamy, Sampathkumar (Committee member) / Narayanan, Vinodh (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
Description
“Tell It to the Frogs: Fukushima’s nuclear disaster and its impact on the Japanese Tree Frog” is a representation of the work from Giraudeau et. al’s “Carotenoid distribution in wild Japanese tree frogs (Hyla japonica) exposed to ionizing radiation in Fukushima.” This paper looked to see if carotenoid levels in

“Tell It to the Frogs: Fukushima’s nuclear disaster and its impact on the Japanese Tree Frog” is a representation of the work from Giraudeau et. al’s “Carotenoid distribution in wild Japanese tree frogs (Hyla japonica) exposed to ionizing radiation in Fukushima.” This paper looked to see if carotenoid levels in the tree frog’s vocal sac, liver, and blood were affected by radiation from Fukushima’s power plant explosion. Without carotenoids, the pigment that gives the frogs their orange color on their necks, their courtship practices would be impacted and would not be as able to show off their fitness to potential mates. The artwork inspired by this research displayed the tree frog’s degradation over time due to radiation, starting with normal life and ending with their death and open on the table. The sculptures also pinpoint where the carotenoids were being measured with a brilliant orange glaze. Through ceramic hand building, the artist created larger than life frogs in hopes to elicit curiosity about them and their plight. While the paper did not conclude any changes in the frog’s physiology after 18 months of exposure, there are still questions that are left unanswered. Why did these frogs not have any reaction? Could there be any effects after more time has passed? Is radiation leakage as big of a problem as previously thought? The only way to get the answers to these questions is to be aware of these amphibians, the circumstances that led them to be involved, and continued research on them and radiation.
ContributorsWesterfield, Savannah (Author) / Beiner, Susan (Thesis director) / McGraw, Kevin (Committee member) / School of Life Sciences (Contributor) / School of Art (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05