Matching Items (102)
Filtering by

Clear all filters

130431-Thumbnail Image.png
Description
We studied the microbial community structure of pilot two-stage membrane biofilm reactors (MBfRs) designed to reduce nitrate (NO[subscript 3]–) and perchlorate (ClO[subscript 4]–) in contaminated groundwater. The groundwater also contained oxygen (O[subscript 2]) and sulfate (SO[2 over 4]–), which became important electron sinks that affected the NO[subscript 3]– and ClO[subscript

We studied the microbial community structure of pilot two-stage membrane biofilm reactors (MBfRs) designed to reduce nitrate (NO[subscript 3]–) and perchlorate (ClO[subscript 4]–) in contaminated groundwater. The groundwater also contained oxygen (O[subscript 2]) and sulfate (SO[2 over 4]–), which became important electron sinks that affected the NO[subscript 3]– and ClO[subscript 4]– removal rates. Using pyrosequencing, we elucidated how important phylotypes of each “primary” microbial group, i.e., denitrifying bacteria (DB), perchlorate-reducing bacteria (PRB), and sulfate-reducing bacteria (SRB), responded to changes in electron-acceptor loading. UniFrac, principal coordinate analysis (PCoA), and diversity analyses documented that the microbial community of biofilms sampled when the MBfRs had a high acceptor loading were phylogenetically distant from and less diverse than the microbial community of biofilm samples with lower acceptor loadings. Diminished acceptor loading led to SO[2 over 4]– reduction in the lag MBfR, which allowed Desulfovibrionales (an SRB) and Thiothrichales (sulfur-oxidizers) to thrive through S cycling. As a result of this cooperative relationship, they competed effectively with DB/PRB phylotypes such as Xanthomonadales and Rhodobacterales. Thus, pyrosequencing illustrated that while DB, PRB, and SRB responded predictably to changes in acceptor loading, a decrease in total acceptor loading led to important shifts within the “primary” groups, the onset of other members (e.g., Thiothrichales), and overall greater diversity.
Created2014-07-01
134507-Thumbnail Image.png
Description
Obesity and related health disparities including type 2 diabetes disproportionately impact Latino youth. These health disparities may be the result of gene-environment interactions, but limited research has examined these interactions in the pediatric age group. Lifestyle intervention is the cornerstone for preventing diabetes among high-risk populations and epigenetic and genetic

Obesity and related health disparities including type 2 diabetes disproportionately impact Latino youth. These health disparities may be the result of gene-environment interactions, but limited research has examined these interactions in the pediatric age group. Lifestyle intervention is the cornerstone for preventing diabetes among high-risk populations and epigenetic and genetic factors may help explain the biological mechanisms underlying diabetes risk reduction following lifestyle changes. MicroRNAs (miRNAs) are small, non-coding RNA’s that regulate gene expression and have emerged as potential biomarkers for predicting type 2 diabetes risk in adults but have yet to be applied to youth. Therefore, the purpose of this study was to identify changes in miRNA expression among Latino youth with prediabetes (4 female/2 male, ages 14-16, BMI percentile 99 ±.2) who participated in a 12-week lifestyle intervention focused on increasing physical activity and improving nutrition-related behaviors.
ContributorsKarch, Jamie (Co-author) / Day, Samantha (Co-author) / Shaibi, Gabriel (Thesis director) / Coletta, Dawn (Committee member) / Arizona State University. College of Nursing & Healthcare Innovation (Contributor) / College of Integrative Sciences and Arts (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
160731-Thumbnail Image.png
Description

The City of Phoenix Street Transportation Department partnered with the Rob and Melani Walton Sustainability Solutions Service at Arizona State University (ASU) and researchers from various ASU schools to evaluate the effectiveness, performance, and community perception of the new pavement coating. The data collection and analysis occurred across multiple neighborhoods

The City of Phoenix Street Transportation Department partnered with the Rob and Melani Walton Sustainability Solutions Service at Arizona State University (ASU) and researchers from various ASU schools to evaluate the effectiveness, performance, and community perception of the new pavement coating. The data collection and analysis occurred across multiple neighborhoods and at varying times across days and/or months over the course of one year (July 15, 2020–July 14, 2021), allowing the team to study the impacts of the surface treatment under various weather conditions.

Created2021-09
158291-Thumbnail Image.png
Description
This thesis introduces new techniques for clustering distributional data according to their geometric similarities. This work builds upon the optimal transportation (OT) problem that seeks global minimum cost for matching distributional data and leverages the connection between OT and power diagrams to solve different clustering problems. The OT formulation is

This thesis introduces new techniques for clustering distributional data according to their geometric similarities. This work builds upon the optimal transportation (OT) problem that seeks global minimum cost for matching distributional data and leverages the connection between OT and power diagrams to solve different clustering problems. The OT formulation is based on the variational principle to differentiate hard cluster assignments, which was missing in the literature. This thesis shows multiple techniques to regularize and generalize OT to cope with various tasks including clustering, aligning, and interpolating distributional data. It also discusses the connections of the new formulation to other OT and clustering formulations to better understand their gaps and the means to close them. Finally, this thesis demonstrates the advantages of the proposed OT techniques in solving machine learning problems and their downstream applications in computer graphics, computer vision, and image processing.
ContributorsMi, Liang (Author) / Wang, Yalin (Thesis advisor) / Chen, Kewei (Committee member) / Karam, Lina (Committee member) / Li, Baoxin (Committee member) / Turaga, Pavan (Committee member) / Arizona State University (Publisher)
Created2020
129562-Thumbnail Image.png
Description

The objective of articulating sustainability visions through modeling is to enhance the outcomes and process of visioning in order to successfully move the system toward a desired state. Models emphasize approaches to develop visions that are viable and resilient and are crafted to adhere to sustainability principles. This approach is

The objective of articulating sustainability visions through modeling is to enhance the outcomes and process of visioning in order to successfully move the system toward a desired state. Models emphasize approaches to develop visions that are viable and resilient and are crafted to adhere to sustainability principles. This approach is largely assembled from visioning processes (resulting in descriptions of desirable future states generated from stakeholder values and preferences) and participatory modeling processes (resulting in systems-based representations of future states co-produced by experts and stakeholders). Vision modeling is distinct from normative scenarios and backcasting processes in that the structure and function of the future desirable state is explicitly articulated as a systems model. Crafting, representing and evaluating the future desirable state as a systems model in participatory settings is intended to support compliance with sustainability visioning quality criteria (visionary, sustainable, systemic, coherent, plausible, tangible, relevant, nuanced, motivational and shared) in order to develop rigorous and operationalizable visions. We provide two empirical examples to demonstrate the incorporation of vision modeling in research practice and education settings. In both settings, vision modeling was used to develop, represent, simulate and evaluate future desirable states. This allowed participants to better identify, explore and scrutinize sustainability solutions.

ContributorsIwaniec, David (Author) / Childers, Dan (Author) / VanLehn, Kurt (Author) / Wiek, Arnim (Author) / Julie Ann Wrigley Global Institute of Sustainability (Contributor)
Created2014-07-01
129574-Thumbnail Image.png
Description

It has become common for sustainability science and resilience theory to be considered as complementary approaches. Occasionally the terms have been used interchangeably. Although these two approaches share some working principles and objectives, they also are based on some distinct assumptions about the operation of systems and how we can

It has become common for sustainability science and resilience theory to be considered as complementary approaches. Occasionally the terms have been used interchangeably. Although these two approaches share some working principles and objectives, they also are based on some distinct assumptions about the operation of systems and how we can best guide these systems into the future. Each approach would benefit from some scholars keeping sustainability science and resilience theory separate and focusing on further developing their distinctiveness and other scholars continuing to explore them in combination. Three areas of research in which following different procedures might be beneficial are whether to prioritize outcomes or system dynamics, how best to take advantage of community input, and increasing the use of knowledge of the past as a laboratory for potential innovations.

Created2013-11-30
129581-Thumbnail Image.png
Description

The context in which many self-governed commons systems operate will likely be significantly altered as globalization processes play out over the next few decades. Such dramatic changes will induce some systems to fail and subsequently to be transformed, rather than merely adapt. Despite this possibility, research on globalization-induced transformations of

The context in which many self-governed commons systems operate will likely be significantly altered as globalization processes play out over the next few decades. Such dramatic changes will induce some systems to fail and subsequently to be transformed, rather than merely adapt. Despite this possibility, research on globalization-induced transformations of social-ecological systems (SESs) is still underdeveloped. We seek to help fill this gap by exploring some patterns of transformation in SESs and the question of what factors help explain the persistence of cooperation in the use of common-pool resources through transformative change. Through the analysis of 89 forest commons in South Korea that experienced such transformations, we found that there are two broad types of transformation, cooperative and noncooperative. We also found that two system-level properties, transaction costs associated group size and network diversity, may affect the direction of transformation. SESs with smaller group sizes and higher network diversity may better organize cooperative transformations when the existing system becomes untenable.

ContributorsYu, David (Author) / Anderies, John (Author) / Lee, Dowon (Author) / Perez, Irene (Author) / Julie Ann Wrigley Global Institute of Sustainability (Contributor)
Created2013-11-30
129465-Thumbnail Image.png
Description

Mild Cognitive Impairment (MCI) is a transitional stage between normal aging and dementia and people with MCI are at high risk of progression to dementia. MCI is attracting increasing attention, as it offers an opportunity to target the disease process during an early symptomatic stage. Structural magnetic resonance imaging (MRI)

Mild Cognitive Impairment (MCI) is a transitional stage between normal aging and dementia and people with MCI are at high risk of progression to dementia. MCI is attracting increasing attention, as it offers an opportunity to target the disease process during an early symptomatic stage. Structural magnetic resonance imaging (MRI) measures have been the mainstay of Alzheimer's disease (AD) imaging research, however, ventricular morphometry analysis remains challenging because of its complicated topological structure. Here we describe a novel ventricular morphometry system based on the hyperbolic Ricci flow method and tensor-based morphometry (TBM) statistics. Unlike prior ventricular surface parameterization methods, hyperbolic conformal parameterization is angle-preserving and does not have any singularities. Our system generates a one-to-one diffeomorphic mapping between ventricular surfaces with consistent boundary matching conditions. The TBM statistics encode a great deal of surface deformation information that could be inaccessible or overlooked by other methods. We applied our system to the baseline MRI scans of a set of MCI subjects from the Alzheimer's Disease Neuroimaging Initiative (ADNI: 71 MCI converters vs. 62 MCI stable). Although the combined ventricular area and volume features did not differ between the two groups, our fine-grained surface analysis revealed significant differences in the ventricular regions close to the temporal lobe and posterior cingulate, structures that are affected early in AD. Significant correlations were also detected between ventricular morphometry, neuropsychological measures, and a previously described imaging index based on fluorodeoxyglucose positron emission tomography (FDG-PET) scans. This novel ventricular morphometry method may offer a new and more sensitive approach to study preclinical and early symptomatic stage AD.

ContributorsShi, Jie (Author) / Stonnington, Cynthia M. (Author) / Thompson, Paul M. (Author) / Chen, Kewei (Author) / Gutman, Boris (Author) / Reschke, Cole (Author) / Baxter, Leslie C. (Author) / Reiman, Eric M. (Author) / Caselli, Richard J. (Author) / Wang, Yalin (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2015-01-01
Description

The effects of urbanization on ozone levels have been widely investigated over cities primarily located in temperate and/or humid regions. In this study, nested WRF-Chem simulations with a finest grid resolution of 1 km are conducted to investigate ozone concentrations O3 due to urbanization within cities in arid/semi-arid environments. First,

The effects of urbanization on ozone levels have been widely investigated over cities primarily located in temperate and/or humid regions. In this study, nested WRF-Chem simulations with a finest grid resolution of 1 km are conducted to investigate ozone concentrations O3 due to urbanization within cities in arid/semi-arid environments. First, a method based on a shape preserving Monotonic Cubic Interpolation (MCI) is developed and used to downscale anthropogenic emissions from the 4 km resolution 2005 National Emissions Inventory (NEI05) to the finest model resolution of 1 km. Using the rapidly expanding Phoenix metropolitan region as the area of focus, we demonstrate the proposed MCI method achieves ozone simulation results with appreciably improved correspondence to observations relative to the default interpolation method of the WRF-Chem system. Next, two additional sets of experiments are conducted, with the recommended MCI approach, to examine impacts of urbanization on ozone production: (1) the urban land cover is included (i.e., urbanization experiments) and, (2) the urban land cover is replaced with the region's native shrubland. Impacts due to the presence of the built environment on O3 are highly heterogeneous across the metropolitan area. Increased near surface O3 due to urbanization of 10–20 ppb is predominantly a nighttime phenomenon while simulated impacts during daytime are negligible. Urbanization narrows the daily O3 range (by virtue of increasing nighttime minima), an impact largely due to the region's urban heat island. Our results demonstrate the importance of the MCI method for accurate representation of the diurnal profile of ozone, and highlight its utility for high-resolution air quality simulations for urban areas.

ContributorsLi, Jialun (Author) / Georgescu, Matei (Author) / Hyde, Peter (Author) / Mahalov, Alex (Author) / Moustaoui, Mohamed (Author) / Julie Ann Wrigley Global Institute of Sustainability (Contributor)
Created2014-11-01
129481-Thumbnail Image.png
Description

There are growing demands for detailed and accurate land cover maps in land system research and planning. Macro-scale land cover maps normally cannot satisfy the studies that require detailed land cover maps at micro scales. In the meantime, applying conventional pixel-based classification methods in classifying high-resolution aerial imagery is ineffective

There are growing demands for detailed and accurate land cover maps in land system research and planning. Macro-scale land cover maps normally cannot satisfy the studies that require detailed land cover maps at micro scales. In the meantime, applying conventional pixel-based classification methods in classifying high-resolution aerial imagery is ineffective to develop high accuracy land-cover maps, especially in spectrally heterogeneous and complicated urban areas. Here we present an object-based approach that identifies land-cover types from 1-meter resolution aerial orthophotography and a 5-foot DEM. Our study area is Tippecanoe County in the State of Indiana, USA, which covers about a 1300 km[superscript 2] land area. We used a countywide aerial photo mosaic and normalized digital elevation model as input datasets in this study. We utilized simple algorithms to minimize computation time while maintaining relatively high accuracy in land cover mapping at a county scale. The aerial photograph was pre-processed using principal component transformation to reduce its spectral dimensionality. Vegetation and non-vegetation were separated via masks determined by the Normalized Difference Vegetation Index. A combination of segmentation algorithms with lower calculation intensity was used to generate image objects that fulfill the characteristics selection requirements. A hierarchical image object network was formed based on the segmentation results and used to assist the image object delineation at different spatial scales. Finally, expert knowledge regarding spectral, contextual, and geometrical aspects was employed in image object identification. The resultant land cover map developed with this object-based image analysis has more information classes and higher accuracy than that derived with pixel-based classification methods.

Created2014-11-01