Matching Items (97)
Filtering by

Clear all filters

136474-Thumbnail Image.png
Description
As the prevalence of childhood obesity in the United States rises, opportunities for children to be physically active become more vital. One opportunity for physical activity involves children walking to and from school. However, children that live in areas with a pedestrian-unfriendly built environment and a low degree of walkability

As the prevalence of childhood obesity in the United States rises, opportunities for children to be physically active become more vital. One opportunity for physical activity involves children walking to and from school. However, children that live in areas with a pedestrian-unfriendly built environment and a low degree of walkability are less likely to be physically active and more likely to be overweight. The purpose of this study was to study walking routes from schools in low-income neighborhoods in Southwestern United States to a local community center. Walking routes from the three study schools (South Mountain High School, Percy Julian Middle School, and Rose Linda Elementary School) were determined by distance, popularity, and the presence of a major thoroughfare. Segments and intersections, which formed the routes, were randomly selected from each school's buffer region. The walking routes as a whole, along with the segments and intersections, were audited and scored using built environment assessments tools: MAPS, PEQI and Walkability Checklist. These scores were utilized to develop interactive mapping tools to visualize the quality of the routes, segments and intersections and identify areas for improvement. Results showed that the routes from Percy Julian to the Kroc Center were, overall, rated higher than routes from the other two schools. The highest scoring route, from the seven routes studied, was route 2 from Percy Julian to the Kroc Center along Broadway Road. South Mountain High School was overall the worst starting point for walking to the Kroc Center as those three walking routes were graded as the least walkable. Possible areas for improvement include installing traffic calming features along major thoroughfares and reducing the perceived risk to pedestrian safety by beautifying the community by planting greenery. Future directions include studying the built environment in South Phoenix communities that surround the Kroc Center.
ContributorsZeien, Justin Lee (Author) / Buman, Matthew (Thesis director) / Hekler, Eric (Committee member) / Fellows, Brian (Committee member) / Barrett, The Honors College (Contributor) / School of Sustainability (Contributor) / Department of Chemistry and Biochemistry (Contributor)
Created2015-05
135788-Thumbnail Image.png
Description
The Department of Defense (DoD) acquisition system is a complex system riddled with cost and schedule overruns. These cost and schedule overruns are very serious issues as the acquisition system is responsible for aiding U.S. warfighters. Hence, if the acquisition process is failing that could be a potential threat to

The Department of Defense (DoD) acquisition system is a complex system riddled with cost and schedule overruns. These cost and schedule overruns are very serious issues as the acquisition system is responsible for aiding U.S. warfighters. Hence, if the acquisition process is failing that could be a potential threat to our nation's security. Furthermore, the DoD acquisition system is responsible for proper allocation of billions of taxpayer's dollars and employs many civilians and military personnel. Much research has been done in the past on the acquisition system with little impact or success. One reason for this lack of success in improving the system is the lack of accurate models to test theories. This research is a continuation of the effort on the Enterprise Requirements and Acquisition Model (ERAM), a discrete event simulation modeling research on DoD acquisition system. We propose to extend ERAM using agent-based simulation principles due to the many interactions among the subsystems of the acquisition system. We initially identify ten sub models needed to simulate the acquisition system. This research focuses on three sub models related to the budget of acquisition programs. In this thesis, we present the data collection, data analysis, initial implementation, and initial validation needed to facilitate these sub models and lay the groundwork for a full agent-based simulation of the DoD acquisition system.
ContributorsBucknell, Sophia Robin (Author) / Wu, Teresa (Thesis director) / Li, Jing (Committee member) / Colombi, John (Committee member) / Industrial, Systems (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
135691-Thumbnail Image.png
Description
Previous research has found improvements in motor and cognitive measures following Assisted Cycle Therapy (AC) in adolescence with Down syndrome (DS). Our study investigated whether we would find improvements in older adults with DS on measures of leisure physical activity (GLTEQ) and sleep, which are early indicators of Alzheimer's disease

Previous research has found improvements in motor and cognitive measures following Assisted Cycle Therapy (AC) in adolescence with Down syndrome (DS). Our study investigated whether we would find improvements in older adults with DS on measures of leisure physical activity (GLTEQ) and sleep, which are early indicators of Alzheimer's disease (AD) in persons with Down syndrome. This study consisted of eight participants with Down syndrome between 31 and 51 years old that cycled for 30 minutes 3 x/week for eight weeks either at their voluntary cycling rate (VC) or approximately 35% faster with the help of a mechanical motor (AC). We predicted that, based on pilot data (Gomez, 2015), GLTEQ would either maintain or improve after AC, but would decrease after VC and would stay the same after NC. We predicted that the sleep score may improve after both VC or AC or it may improve more after VC than AC based on pilot data related to leisure activity. Our results were consistent with our prediction that GLTEQ will either maintain or improve after AC but will decrease after VC. Our results were not consistent with our prediction that sleep may improve after both VC or AC or it may improve more after VC than AC, possibly because we did not pre-screen for sleep disorders. Future research should focus on recruiting more participants and using both objective and subjective measures of sleep and physical activity to improve the efficacy of the study.
ContributorsParker, Lucas Maury (Author) / Ringenbach, Shannon (Thesis director) / Buman, Matthew (Committee member) / Holzapfel, Simon (Committee member) / School of Social and Behavioral Sciences (Contributor) / School of Nutrition and Health Promotion (Contributor) / College of Public Service and Community Solutions (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
136820-Thumbnail Image.png
Description
Translating research has been a goal of the Department of Health and Human Services since 1999. Through two years of iteration and interview with our community members, we have collected insights into the barriers to accomplishing this goal. Liberating Science is a think-tank of researchers and scientists who seek to

Translating research has been a goal of the Department of Health and Human Services since 1999. Through two years of iteration and interview with our community members, we have collected insights into the barriers to accomplishing this goal. Liberating Science is a think-tank of researchers and scientists who seek to create a more transparent process to accelerate innovation starting with behavioral health research.
ContributorsRaghani, Pooja Sioux (Author) / Hekler, Eric (Thesis director) / Buman, Matthew (Committee member) / Pruthi, Virgilia Kaur (Committee member) / Barrett, The Honors College (Contributor) / Department of Chemistry and Biochemistry (Contributor) / Biomedical Informatics Program (Contributor)
Created2014-05
137043-Thumbnail Image.png
Description
Over the last decade, the ability to track daily activity through step counting devices has undergone major changes. Advanced technologies have brought about new step counting devices and new form factors. The validity of these new devices is not fully known. The purpose of this study was to

Over the last decade, the ability to track daily activity through step counting devices has undergone major changes. Advanced technologies have brought about new step counting devices and new form factors. The validity of these new devices is not fully known. The purpose of this study was to validate and compare the step counting accuracy of commercially available hip- and wrist-worn accelerometers. A total of 185 participants (18-64 years of age) were analyzed for this study, with the sample composed nearly evenly of each gender (53.5% female) and BMI classification (33% overweight, 31.9% obese). Each participant wore five devices including hip-worn Omron HJ-112 and Fitbit One, and wrist-worn Fitbit Flex, Nike Fuelband, and Jawbone UP. A range of activities (some constant among all participants, some randomly assigned) were then used to accumulate steps including walking on a hard surface for 400m, treadmill walking/running at 2mph, 3mph, and ≥5mph, walking up five flights of stairs, and walking down five flights of stairs. To validate the accuracy of each device, steps were also counted by direct observation. Results showed high concordance with directly observed steps for all devices (intraclass correlation coefficient range: 0.86 to 0.99), with hip-worn devices more accurate than wrist-worn devices. Absolute percent error values were lower among hip-worn devices and at faster walking/running speeds. Nike Fuelband consistently was the worst performing of all test devices. These results are important because as pedometers become more complex, it is important that they remain accurate throughout a variety of activities. Future directions for this research are to explore the validity of these devices in free-living settings and among younger and older populations.
ContributorsKramer, Cody Lee (Author) / Buman, Matthew (Thesis director) / Hoffner, Kristin (Committee member) / Marshall, Simon (Committee member) / Barrett, The Honors College (Contributor) / School of Nutrition and Health Promotion (Contributor)
Created2014-05
149315-Thumbnail Image.png
Description
In today's global market, companies are facing unprecedented levels of uncertainties in supply, demand and in the economic environment. A critical issue for companies to survive increasing competition is to monitor the changing business environment and manage disturbances and changes in real time. In this dissertation, an integrated framework is

In today's global market, companies are facing unprecedented levels of uncertainties in supply, demand and in the economic environment. A critical issue for companies to survive increasing competition is to monitor the changing business environment and manage disturbances and changes in real time. In this dissertation, an integrated framework is proposed using simulation and online calibration methods to enable the adaptive management of large-scale complex supply chain systems. The design, implementation and verification of the integrated approach are studied in this dissertation. The research contributions are two-fold. First, this work enriches symbiotic simulation methodology by proposing a framework of simulation and advanced data fusion methods to improve simulation accuracy. Data fusion techniques optimally calibrate the simulation state/parameters by considering errors in both the simulation models and in measurements of the real-world system. Data fusion methods - Kalman Filtering, Extended Kalman Filtering, and Ensemble Kalman Filtering - are examined and discussed under varied conditions of system chaotic levels, data quality and data availability. Second, the proposed framework is developed, validated and demonstrated in `proof-of-concept' case studies on representative supply chain problems. In the case study of a simplified supply chain system, Kalman Filtering is applied to fuse simulation data and emulation data to effectively improve the accuracy of the detection of abnormalities. In the case study of the `beer game' supply chain model, the system's chaotic level is identified as a key factor to influence simulation performance and the choice of data fusion method. Ensemble Kalman Filtering is found more robust than Extended Kalman Filtering in a highly chaotic system. With appropriate tuning, the improvement of simulation accuracy is up to 80% in a chaotic system, and 60% in a stable system. In the last study, the integrated framework is applied to adaptive inventory control of a multi-echelon supply chain with non-stationary demand. It is worth pointing out that the framework proposed in this dissertation is not only useful in supply chain management, but also suitable to model other complex dynamic systems, such as healthcare delivery systems and energy consumption networks.
ContributorsWang, Shanshan (Author) / Wu, Teresa (Thesis advisor) / Fowler, John (Thesis advisor) / Pfund, Michele (Committee member) / Li, Jing (Committee member) / Pavlicek, William (Committee member) / Arizona State University (Publisher)
Created2010
Description

Human activity recognition is the task of identifying a person’s movement from sensors in a wearable device, such as a smartphone, smartwatch, or a medical-grade device. A great method for this task is machine learning, which is the study of algorithms that learn and improve on their own with

Human activity recognition is the task of identifying a person’s movement from sensors in a wearable device, such as a smartphone, smartwatch, or a medical-grade device. A great method for this task is machine learning, which is the study of algorithms that learn and improve on their own with the help of massive amounts of useful data. These classification models can accurately classify activities with the time-series data from accelerometers and gyroscopes. A significant way to improve the accuracy of these machine learning models is preprocessing the data, essentially augmenting data to make the identification of each activity, or class, easier for the model. <br/>On this topic, this paper explains the design of SigNorm, a new web application which lets users conveniently transform time-series data and view the effects of those transformations in a code-free, browser-based user interface. The second and final section explains my take on a human activity recognition problem, which involves comparing a preprocessed dataset to an un-augmented one, and comparing the differences in accuracy using a one-dimensional convolutional neural network to make classifications.

ContributorsLi, Vincent (Author) / Turaga, Pavan (Thesis director) / Buman, Matthew (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
130366-Thumbnail Image.png
Description
Background
The purpose of this study is to determine the feasibility of three widely used wearable sensors in research settings for 24 h monitoring of sleep, sedentary, and active behaviors in middle-aged women.
Methods
Participants were 21 inactive, overweight (M Body Mass Index (BMI) = 29.27 ± 7.43) women, 30 to 64 years (M = 45.31 ± 9.67). Women were instructed

Background
The purpose of this study is to determine the feasibility of three widely used wearable sensors in research settings for 24 h monitoring of sleep, sedentary, and active behaviors in middle-aged women.
Methods
Participants were 21 inactive, overweight (M Body Mass Index (BMI) = 29.27 ± 7.43) women, 30 to 64 years (M = 45.31 ± 9.67). Women were instructed to wear each sensor on the non-dominant hip (ActiGraph GT3X+), wrist (GENEActiv), or upper arm (BodyMedia SenseWear Mini) for 24 h/day and record daily wake and bed times for one week over the course of three consecutive weeks. Women received feedback about their daily physical activity and sleep behaviors. Feasibility (i.e., acceptability and demand) was measured using surveys, interviews, and wear time.
Results
Women felt the GENEActiv (94.7 %) and SenseWear Mini (90.0 %) were easier to wear and preferred the placement (68.4, 80 % respectively) as compared to the ActiGraph (42.9, 47.6 % respectively). Mean wear time on valid days was similar across sensors (ActiGraph: M = 918.8 ± 115.0 min; GENEActiv: M = 949.3 ± 86.6; SenseWear: M = 928.0 ± 101.8) and well above other studies using wake time only protocols. Informational feedback was the biggest motivator, while appearance, comfort, and inconvenience were the biggest barriers to wearing sensors. Wear time was valid on 93.9 % (ActiGraph), 100 % (GENEActiv), and 95.2 % (SenseWear) of eligible days. 61.9, 95.2, and 71.4 % of participants had seven valid days of data for the ActiGraph, GENEActiv, and SenseWear, respectively.
Conclusion
Twenty-four hour monitoring over seven consecutive days is a feasible approach in middle-aged women. Researchers should consider participant acceptability and demand, in addition to validity and reliability, when choosing a wearable sensor. More research is needed across populations and study designs.
ContributorsHuberty, Jennifer (Author) / Ehlers, Diane (Author) / Kurka, Jonathan (Author) / Ainsworth, Barbara (Author) / Buman, Matthew (Author) / College of Health Solutions (Contributor) / School of Nutrition and Health Promotion (Contributor)
Created2015-07-30
130353-Thumbnail Image.png
Description
Background
Athletes may be at risk for developing adverse health outcomes due to poor eating behaviors during college. Due to the complex nature of the diet, it is difficult to include or exclude individual food items and specific food groups from the diet. Eating behaviors may better characterize the complex interactions

Background
Athletes may be at risk for developing adverse health outcomes due to poor eating behaviors during college. Due to the complex nature of the diet, it is difficult to include or exclude individual food items and specific food groups from the diet. Eating behaviors may better characterize the complex interactions between individual food items and specific food groups. The purpose was to examine the Rapid Eating Assessment for Patients survey (REAP) as a valid tool for analyzing eating behaviors of NCAA Division-I male and female athletes using pattern identification. Also, to investigate the relationships between derived eating behavior patterns and body mass index (BMI) and waist circumference (WC) while stratifying by sex and aesthetic nature of the sport.
Methods
Two independent samples of male (n = 86; n = 139) and female (n = 64; n = 102) collegiate athletes completed the REAP in June-August 2011 (n = 150) and June-August 2012 (n = 241). Principal component analysis (PCA) determined possible factors using wave-1 athletes. Exploratory (EFA) and confirmatory factor analyses (CFA) determined factors accounting for error and confirmed model fit in wave-2 athletes. Wave-2 athletes' BMI and WC were recorded during a physical exam and sport participation determined classification in aesthetic and non-aesthetic sport. Mean differences in eating behavior pattern score were explored. Regression models examined interactions between pattern scores, participation in aesthetic or non-aesthetic sport, and BMI and waist circumference controlling for age and race.
Results
A 5-factor PCA solution accounting for 60.3% of sample variance determined fourteen questions for EFA and CFA. A confirmed solution revealed patterns of Desserts, Healthy food, Meats, High-fat food, and Dairy. Pattern score (mean ± SE) differences were found, as non-aesthetic sport males had a higher (better) Dessert score than aesthetic sport males (2.16 ± 0.07 vs. 1.93 ± 0.11). Female aesthetic athletes had a higher score compared to non-aesthetic female athletes for the Dessert (2.11 ± 0.11 vs. 1.88 ± 0.08), Meat (1.95 ± 0.10 vs. 1.72 ± 0.07), High-fat food (1.70 ± 0.08 vs. 1.46 ± 0.06), and Dairy (1.70 ± 0.11 vs. 1.43 ± 0.07) patterns.
Conclusions
REAP is a construct valid tool to assess dietary patterns in college athletes. In light of varying dietary patterns, college athletes should be evaluated for healthful and unhealthful eating behaviors.
ContributorsKurka, Jonathan (Author) / Buman, Matthew (Author) / Ainsworth, Barbara (Author) / College of Health Solutions (Contributor) / School of Nutrition and Health Promotion (Contributor)
Created2014-08-15
131810-Thumbnail Image.png
Description
Technological applications are continually being developed in the healthcare industry as technology becomes increasingly more available. In recent years, companies have started creating mobile applications to address various conditions and diseases. This falls under mHealth or the “use of mobile phones and other wireless technology in medical care” (Rouse, 2018).

Technological applications are continually being developed in the healthcare industry as technology becomes increasingly more available. In recent years, companies have started creating mobile applications to address various conditions and diseases. This falls under mHealth or the “use of mobile phones and other wireless technology in medical care” (Rouse, 2018). The goal of this study was to identify if data gathered through the use of mHealth methods can be used to build predictive models. The first part of this thesis contains a literature review presenting relevant definitions and several potential studies that involved the use of technology in healthcare applications. The second part of this thesis focuses on data from one study, where regression analysis is used to develop predictive models.

Rouse, M. (2018). mHealth (mobile health). Retrieved from https://searchhealthit.techtarget.com/definition/mHealth
ContributorsAkers, Lindsay (Co-author) / Kiraly, Alyssa (Co-author) / Li, Jing (Thesis director) / Yoon, Hyunsoo (Committee member) / Industrial, Systems & Operations Engineering Prgm (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05