Matching Items (66)
Filtering by

Clear all filters

158219-Thumbnail Image.png
Description

This study aimed to investigate the effects of specific macronutrient feedings on competitive golf performance and perceived levels of fatigue and alertness. Participants played three, nine hole rounds of golf, consuming an isocaloric beverage as a control (CON), with the addition of carbohydrate (CHO), or combination of protein and carbohydrate

This study aimed to investigate the effects of specific macronutrient feedings on competitive golf performance and perceived levels of fatigue and alertness. Participants played three, nine hole rounds of golf, consuming an isocaloric beverage as a control (CON), with the addition of carbohydrate (CHO), or combination of protein and carbohydrate (COM). Physiological and performance measurements were taken before, during, and following each nine hole round. Performance measurements include driving accuracy (DA), driving distance (DD), iron accuracy (IA), chipping accuracy (CA), and putting accuracy (PA). Pre-golf hydration status (urine specific gravity [USG]) and Sweat Rate during golf performance showed no significant differences between trials. All nine hole rounds were performed in ~2 hours. Environmental conditions were similar for all three testing days (mean WBGT=10.946). No significant differences were seen in Driving Distance, Driving Accuracy, and Iron Accuracy for all nine holes between groups receiving different macronutrient feedings. Chipping Accuracy was significantly better in CON trial compared to CHO (p=0.004) and COM (p=0.019). No significant differences were seen in putting make percentages. COM trial significantly lowered Perceived Levels of Fatigue (p=0.019) compared to CON. The CHO trial showed significant improvements in DA compared to CON (13.7 vs. 44.1, p=0.012) and COM (13.7 vs. 33.6, p=0.004) in the first four holes. In the last five holes, the COM trial showed significant improvements in DA compared to CHO (17.5 vs. 29.7, p=0.007). Low Handicap golfers (3 +/- 3) performed significantly better than High Handicap golfers (14 +/- 3.6) in DD (265 vs. 241, p<0.001), DA (15.0 vs. 29.3, p=0.004), IA (15.2 vs. 25.2, p<0.001), CA (52.0 vs. 61.5, p=0.027), and PA 5ft (64% vs. 40%, p=0.003). High Handicap players showed no significant differences between the three trials for any golf performance measurements. Low Handicap players showed significant improvements in DA for COM trial compared to CON trial (13.6 vs. 27.6, p=0.003). The results suggest that carbohydrates at the start and a combination of carbohydrate and protein is beneficial at the second part of 9 holes to improve golf performance and maintain levels of fatigue, however, it needs to be investigated how this knowledge will relate to playing more holes.

ContributorsThompsett, Daniel James (Author) / Wardenaar, Floris (Thesis advisor) / Der Ananian, Cheryl (Committee member) / Hondula, David M. (Committee member) / Arizona State University (Publisher)
Created2020
157960-Thumbnail Image.png
Description

Urban heat is a growing problem that impacts public health, water and energy use, and the economy and affects population subgroups differently. Exposure and sensitivity, two key factors in determining vulnerability, have been widely researched. This dissertation focuses on the adaptive capacity component of heat vulnerability at the individual, household,

Urban heat is a growing problem that impacts public health, water and energy use, and the economy and affects population subgroups differently. Exposure and sensitivity, two key factors in determining vulnerability, have been widely researched. This dissertation focuses on the adaptive capacity component of heat vulnerability at the individual, household, and community scale. Using a mixed methods approach and metropolitan Phoenix as a test site, I explored how vulnerable communities understand and adapt to increasing extreme urban heat to uncover adaptive capacity that is not being operationalized well through current heat vulnerability frameworks. Twenty-three open-ended interviews were conducted where residents were encouraged to tell their stories about past and present extreme heat adaptive capacity behaviors. A community-based participatory research project consisting of three workshops and demonstration projects was piloted in three underserved neighborhoods to address urban heat on a local scale and collaboratively create community heat action plans. Last, a practitioner stakeholder meeting was held to discuss how the heat action plans will be integrated into other community efforts. Using data from the interviews, workshops, and stakeholder meeting, social capital was examined in the context of urban heat. Although social capital has been measured in a multitude of ways to gauge social relationships, trust, and reciprocity within a community, it is situational and reflects a position within the formal and informal aspects of any issue. Three narratives emerged from the interviews illuminating differentiated capacities to cope with urban heat: heat is an inconvenience, heat is a manageable problem, and heat is a catastrophe. For each of these narratives, generic adaptive capacity is impacted differently by specific heat adaptive capacity. The heat action plan workshops generated hyper-local heat solutions that reflected the neighborhoods’ different identities. Community-based organizations were instrumental in the success of this program. Social capital indicators were developed specific to urban heat that rely on heavily on family and personal relationships, attitudes and beliefs, perceived support, network size and community engagement. This research highlights how extreme heat vulnerability may need to be rethought to capture adaptive capacity nuances and the dynamic structure of who is vulnerable under what circumstances.

ContributorsGuardaro, Melissa (Author) / Redman, Charles L. (Thesis advisor) / Hondula, David M. (Committee member) / Johnston, Erik W., 1977- (Committee member) / Arizona State University (Publisher)
Created2019
157945-Thumbnail Image.png
Description
Moderate physical activity, such as walking and biking, positively affects physical and mental health. Outdoor thermal comfort is an important prerequisite for incentivizing an active lifestyle. Thus, extreme heat poses significant challenges for people who are outdoors by choice or necessity. The type and qualities of built infrastructure determine the

Moderate physical activity, such as walking and biking, positively affects physical and mental health. Outdoor thermal comfort is an important prerequisite for incentivizing an active lifestyle. Thus, extreme heat poses significant challenges for people who are outdoors by choice or necessity. The type and qualities of built infrastructure determine the intensity and duration of individual exposure to heat. As cities globally are shifting priorities towards non-motorized and public transit travel, more residents are expected to experience the city on their feet. Thus, physical conditions as well as psychological perception of the environment that affect thermal comfort will become paramount. Phoenix, Arizona, is used as a case study to examine the effectiveness of current public transit and street infrastructure to reduce heat exposure and affect the thermal comfort of walkers and public transit users.

The City of Phoenix has committed to public transit improvements in the Transportation 2050 plan and has recently adopted a Complete Streets Policy. Proposed changes include mobility improvements and creating a safe and comfortable environment for non-motorized road participants. To understand what kind of improvements would benefit thermal comfort the most, it is necessary to understand heat exposure at finer spatial scales, explore whether current bus shelter designs are adequate in mitigating heat-health effects, and comprehensively assess the impact of design on physical, psychological and behavioral aspects of thermal comfort. A study conducted at bus stops in one Phoenix neighborhood examined grey and green infrastructure types preferred for cooling and found relationships between perception of pleasantness and thermal sensation votes. Walking interviews conducted in another neighborhood event examined the applicability of a framework for walking behavior under the stress of heat, and how differences between the streets affected perceptions of the walkers. The interviews revealed that many of the structural themes from the framework of walking behavior were applicable, however, participants assessed the majority of the elements in their walk from a heat mitigation perspective. Finally, guiding questions for walkability in hot and arid climates were developed based on the literature review and results from the empirical studies. This dissertation contributes to filling the gap between walkability and outdoor thermal comfort, and presents methodology and findings that can be useful to address walkability and outdoor thermal comfort in the world’s hot cities as well as those in temperate climates that may face similar climate challenges in the future as the planet warms.
ContributorsDzyuban, Yuliya (Author) / Redman, Charles L. (Thesis advisor) / Coseo, Paul J. (Committee member) / Hondula, David M. (Committee member) / Arizona State University (Publisher)
Created2019
157662-Thumbnail Image.png
Description

Environmental hazards and disaster researchers have demonstrated strong associations between sociodemographic indicators, such as age and socio-economic status (SES), and hazard exposures and health outcomes for individuals and in certain communities. At the same time, behavioral health and risk communications research has examined how individual psychology influences adaptive strategies and

Environmental hazards and disaster researchers have demonstrated strong associations between sociodemographic indicators, such as age and socio-economic status (SES), and hazard exposures and health outcomes for individuals and in certain communities. At the same time, behavioral health and risk communications research has examined how individual psychology influences adaptive strategies and behaviors in the face of hazards. However, at present, we do not understand the explanatory mechanisms that explain relationships between larger scale social structure, individual psychology, and specific behaviors that may attenuate or amplify risk. Extreme heat presents growing risks in a rapidly warming and urbanizing world. This dissertation examines the social and behavioral mechanisms that may explain inequitable health outcomes from exposure to concurrent extreme heat and electrical power failure in Phoenix, AZ and extreme heat in Detroit, MI. Exploratory analysis of 163 surveys in Phoenix, AZ showed that age, gender, and respondent’s racialized group identity did not relate to thermal discomfort and self-reported heat illness, which were only predicted by SES (StdB = -0.52, p < 0.01). Of the explanatory mechanisms tested in the study, only relative air conditioning intensity and thermal discomfort explained self-reported heat illness. Thermal discomfort was tested as both a mechanism and outcome measure. Content analysis of 40 semi-structured interviews in Phoenix, AZ revealed that social vulnerability was associated with an increase in perceived hazard severity (StdB = 0.44, p < 0.01), a decrease in perceived adaptation efficacy (StdB = -0.38, p = 0.02), and an indirect increase (through adaptive efficacy) in maladaptive intentions (StdB = 0.18, p = 0.01). Structural equation modeling of 244 surveys in Phoenix, AZ and Detroit, MI revealed that relationships between previous heat illness experience, perceived heat risk, and adaptive intentions were significantly moderated by adaptive capacity: high adaptive capacity households were more likely to undertake adaptive behaviors, and those decisions were more heavily influenced by risk perceptions and previous experiences. However, high adaptive capacity households had lower risk perceptions and fewer heat illness experiences than low adaptive capacity households. A better understanding of the mechanisms that produce social vulnerability can facilitate more salient risk messaging and more targeted public health interventions. For example, public health risk messaging that provides information on the efficacy of specific adaptations may be more likely to motivate self-protective action, and ultimately protect populations.

ContributorsChakalian, Paul Michael (Author) / Harlan, Sharon L (Thesis advisor) / Hondula, David M. (Thesis advisor) / White, Dave D (Committee member) / Arizona State University (Publisher)
Created2019
158797-Thumbnail Image.png
Description

Urban climate conditions are the physical manifestation of formal and informal social forces of design, policy, and urban management. The urban design community (e.g. planners, architects, urban designers, landscape architects, engineers) impacts urban development through influential built projects and design discourse. Their decisions create urban landscapes that impact physiological and

Urban climate conditions are the physical manifestation of formal and informal social forces of design, policy, and urban management. The urban design community (e.g. planners, architects, urban designers, landscape architects, engineers) impacts urban development through influential built projects and design discourse. Their decisions create urban landscapes that impact physiological and mental health for people that live in and around them. Therefore, to understand possible opportunities for decision-making to support healthier urban environments and communities, this dissertation examines the role of neighborhood design on the thermal environment and the effect the thermal environment has on mental health. In situ data collection and numerical modeling are used to assess current and proposed urban design configurations in the Edison Eastlake public housing community in central Phoenix for their efficacy in cooling the thermal environment. A distributed lagged non-linear model is used to investigate the relative risk of hospitalization for schizophrenia in Maricopa County based on atmospheric conditions. The dissertation incorporates both an assessment of design strategies for the cooling of the thermal environment and an analysis of the existing thermal environment’s relationship with mental health. By reframing the urban design of neighborhoods through the lens of urban climate, this research reinforces the importance of incorporating the community into the planning process and highlights some unintended outcomes of prioritizing the thermal environment in urban design.

ContributorsCrank, Peter J (Author) / Sailor, David (Thesis advisor) / Middel, Ariane (Committee member) / Hondula, David M. (Committee member) / Coseo, Paul J (Committee member) / Arizona State University (Publisher)
Created2020
161203-Thumbnail Image.png
Description

To address the dearth of knowledge about person-based and trip-level exposure, we developed the Icarus model. Icarus uses mesoscale traffic model—activity-based model—to analyze the heat exposure of regions of interest at an individual level. The goal with Icarus was to design accurate, granular models of population and temperature behavior for

To address the dearth of knowledge about person-based and trip-level exposure, we developed the Icarus model. Icarus uses mesoscale traffic model—activity-based model—to analyze the heat exposure of regions of interest at an individual level. The goal with Icarus was to design accurate, granular models of population and temperature behavior for a target region, which could be transformed into a heat exposure model by means of simulation and spatial-temporal joining. By combining and implementing the most robust software and data available, Icarus was able to capture person-based exposure with unparalleled detail. Here we describe the model methodology. We use the metropolitan region of Phoenix, Arizona, USA to carry out a case study using Icarus.

ContributorsLi, Rui (Author) / Brownlee, Ben (Author) / Chester, Mikhail Vin (Author) / Hondula, David M. (Author) / Middel, Ariane (Author) / Michne, Austin (Author) / Watkins, Lance (Author)
129508-Thumbnail Image.png
Description

Vision and Change in Undergraduate Biology Education outlined five core concepts intended to guide undergraduate biology education: 1) evolution; 2) structure and function; 3) information flow, exchange, and storage; 4) pathways and transformations of energy and matter; and 5) systems. We have taken these general recommendations and created a Vision

Vision and Change in Undergraduate Biology Education outlined five core concepts intended to guide undergraduate biology education: 1) evolution; 2) structure and function; 3) information flow, exchange, and storage; 4) pathways and transformations of energy and matter; and 5) systems. We have taken these general recommendations and created a Vision and Change BioCore Guide—a set of general principles and specific statements that expand upon the core concepts, creating a framework that biology departments can use to align with the goals of Vision and Change. We used a grassroots approach to generate the BioCore Guide, beginning with faculty ideas as the basis for an iterative process that incorporated feedback from more than 240 biologists and biology educators at a diverse range of academic institutions throughout the United States. The final validation step in this process demonstrated strong national consensus, with more than 90% of respondents agreeing with the importance and scientific accuracy of the statements. It is our hope that the BioCore Guide will serve as an agent of change for biology departments as we move toward transforming undergraduate biology education.

ContributorsBrownell, Sara (Author) / Freeman, Scott (Author) / Wenderoth, Mary Pat (Author) / Crowe, Alison J. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2014-06-01
129239-Thumbnail Image.png
Description

The U.S. scientific research community does not reflect America's diversity. Hispanics, African Americans, and Native Americans made up 31% of the general population in 2010, but they represented only 18 and 7% of science, technology, engineering, and mathematics (STEM) bachelor's and doctoral degrees, respectively, and 6% of STEM faculty members

The U.S. scientific research community does not reflect America's diversity. Hispanics, African Americans, and Native Americans made up 31% of the general population in 2010, but they represented only 18 and 7% of science, technology, engineering, and mathematics (STEM) bachelor's and doctoral degrees, respectively, and 6% of STEM faculty members (National Science Foundation [NSF], 2013). Equity in the scientific research community is important for a variety of reasons; a diverse community of researchers can minimize the negative influence of bias in scientific reasoning, because people from different backgrounds approach a problem from different perspectives and can raise awareness regarding biases (Intemann, 2009). Additionally, by failing to be attentive to equity, we may exclude some of the best and brightest scientific minds and limit the pool of possible scientists (Intemann, 2009). Given this need for equity, how can our scientific research community become more inclusive?

ContributorsBangera, Gita (Author) / Brownell, Sara (Author) / College of Liberal Arts and Sciences (Contributor)
Created2014-12-01
128826-Thumbnail Image.png
Description

Women who start college in one of the natural or physical sciences leave in greater proportions than their male peers. The reasons for this difference are complex, and one possible contributing factor is the social environment women experience in the classroom. Using social network analysis, we explore how gender influences

Women who start college in one of the natural or physical sciences leave in greater proportions than their male peers. The reasons for this difference are complex, and one possible contributing factor is the social environment women experience in the classroom. Using social network analysis, we explore how gender influences the confidence that college-level biology students have in each other’s mastery of biology. Results reveal that males are more likely than females to be named by peers as being knowledgeable about the course content. This effect increases as the term progresses, and persists even after controlling for class performance and outspokenness. The bias in nominations is specifically due to males over-nominating their male peers relative to their performance. The over-nomination of male peers is commensurate with an overestimation of male grades by 0.57 points on a 4 point grade scale, indicating a strong male bias among males when assessing their classmates. Females, in contrast, nominated equitably based on student performance rather than gender, suggesting they lacked gender biases in filling out these surveys. These trends persist across eleven surveys taken in three different iterations of the same Biology course. In every class, the most renowned students are always male. This favoring of males by peers could influence student self-confidence, and thus persistence in this STEM discipline.

ContributorsGrunspan, Daniel Z. (Author) / Eddy, Sarah L. (Author) / Brownell, Sara (Author) / Wiggins, Benjamin L. (Author) / Crowe, Alison J. (Author) / Goodreau, Steven M. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2016-02-10
128972-Thumbnail Image.png
Description

Background: Most excess deaths that occur during extreme hot weather events do not have natural heat recorded as an underlying or contributing cause. This study aims to identify the specific individuals who died because of hot weather using only secondary data. A novel approach was developed in which the expected number

Background: Most excess deaths that occur during extreme hot weather events do not have natural heat recorded as an underlying or contributing cause. This study aims to identify the specific individuals who died because of hot weather using only secondary data. A novel approach was developed in which the expected number of deaths was repeatedly sampled from all deaths that occurred during a hot weather event, and compared with deaths during a control period. The deaths were compared with respect to five factors known to be associated with hot weather mortality. Individuals were ranked by their presence in significant models over 100 trials of 10,000 repetitions. Those with the highest rankings were identified as probable excess deaths. Sensitivity analyses were performed on a range of model combinations. These methods were applied to a 2009 hot weather event in greater Vancouver, Canada.

Results: The excess deaths identified were sensitive to differences in model combinations, particularly between univariate and multivariate approaches. One multivariate and one univariate combination were chosen as the best models for further analyses. The individuals identified by multiple combinations suggest that marginalized populations in greater Vancouver are at higher risk of death during hot weather.

Conclusions: This study proposes novel methods for classifying specific deaths as expected or excess during a hot weather event. Further work is needed to evaluate performance of the methods in simulation studies and against clinically identified cases. If confirmed, these methods could be applied to a wide range of populations and events of interest.

Created2016-11-15