Matching Items (67)
Filtering by

Clear all filters

Description

Many people use public transportation in their daily lives, which is often praised at as a healthy and sustainable choice to make. However, in extreme temperatures this also puts people at a greater risk for negative consequences resulting from such exposure to heat. In Phoenix, public transportation riders are faced

Many people use public transportation in their daily lives, which is often praised at as a healthy and sustainable choice to make. However, in extreme temperatures this also puts people at a greater risk for negative consequences resulting from such exposure to heat. In Phoenix, public transportation riders are faced with extreme heat in the summer along with the increased internal heat production caused by the physical activity required to use public transportation. In this study, I estimated total exposure and average exposure per rider for six stops in Phoenix. To do this I used City of Phoenix ridership data, weather data, and survey responses from an ASU City of Phoenix Bus Stop Survey conducted in summer 2016. These data sets were combined by multiplying different metrics to produce various exposure values. During analysis two sets of calculations were made. One keeping weather constant and another keeping ridership constant. I found that there was a large range of exposure between the selected stops and that the thermal environment influences the amount of exposure depending on the time of day the exposure is occurring. During the morning a greener location leads to less exposure, while in the afternoon an urban location leads to less exposure. Know detailed information about exposure at these stops I was also able to evaluate survey participants' thermal comfort at each stop and how it may relate to exposure. These findings are useful in making educated transportation planning decisions and improving the quality of life for people living in places with extreme summer temperatures.

ContributorsGerster, Katrina Ashley (Author) / Hondula, David M. (Thesis director) / Watkins, Lance (Committee member) / School of Geographical Sciences and Urban Planning (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
134485-Thumbnail Image.png
Description
Learning student names has been promoted as an inclusive classroom practice, but it is unknown whether students value having their names known by an instructor. We explored this question in the context of a high-enrollment active-learning undergraduate biology course. Using surveys and semistructured interviews, we investigated whether students perceived that

Learning student names has been promoted as an inclusive classroom practice, but it is unknown whether students value having their names known by an instructor. We explored this question in the context of a high-enrollment active-learning undergraduate biology course. Using surveys and semistructured interviews, we investigated whether students perceived that instructors know their names, the importance of instructors knowing their names, and how instructors learned their names. We found that, while only 20% of students perceived their names were known in previous high-enrollment biology classes, 78% of students perceived that an instructor of this course knew their names. However, instructors only knew 53% of names, indicating that instructors do not have to know student names in order for students to perceive that their names are known. Using grounded theory, we identified nine reasons why students feel that having their names known is important. When we asked students how they perceived instructors learned their names, the most common response was instructor use of name tents during in-class discussion. These findings suggest that students can benefit from perceiving that instructors know their names and name tents could be a relatively easy way for students to think that instructors know their names. Academic self-concept is one's perception of his or her ability in an academic domain compared to other students. As college biology classrooms transition from lecturing to active learning, students interact more with each other and are likely comparing themselves more to students in the class. Student characteristics, such as gender and race/ethnicity, can impact the level of academic self-concept, however this has been unexplored in the context of undergraduate biology. In this study, we explored whether student characteristics can affect academic self-concept in the context of a college physiology course. Using a survey, students self-reported how smart they perceived themselves in the context of physiology compared to the whole class and compared to the student they worked most closely with in class. Using logistic regression, we found that males and native English speakers had significantly higher academic self-concept compared to the whole class compared with females and non-native English speakers, respectively. We also found that males and non-transfer students had significantly higher academic self-concept compared to the student they worked most closely with in class compared with females and transfer students, respectively. Using grounded theory, we identified ten distinct factors that influenced how students determined whether they are more or less smart than their groupmate. Finally, we found that students were more likely to report participating less than their groupmate if they had a lower academic self-concept. These findings suggest that student characteristics can influence students' academic self-concept, which in turn may influence their participation in small group discussion.
ContributorsKrieg, Anna Florence (Author) / Brownell, Sara (Thesis director) / Stout, Valerie (Committee member) / Cooper, Katelyn (Committee member) / School of Life Sciences (Contributor) / School of Politics and Global Studies (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
135232-Thumbnail Image.png
Description
Course-Based Undergraduate Research Experiences, or CUREs have become an increasingly popular way to integrate research opportunities into the undergraduate biology curriculum. Unlike traditional cookbook labs which provide students with a set experimental design and known outcome, CUREs offer students the opportunity to participate in novel and interesting research that is

Course-Based Undergraduate Research Experiences, or CUREs have become an increasingly popular way to integrate research opportunities into the undergraduate biology curriculum. Unlike traditional cookbook labs which provide students with a set experimental design and known outcome, CUREs offer students the opportunity to participate in novel and interesting research that is of interest to the greater biology community. While CUREs have been championed as a way to provide more students with the opportunity to experience, it is unclear whether students benefit differently from participating in different CURE with different structural elements. In this study we focused in on one proposed element of a CURE, collaboration, to determine whether student's perception of this concept change over the course of a CURE and whether it differs among students enrolled in different CUREs. We analyzed pre and post open-ended surveys asking the question "Why might collaboration be important in science?" in two CUREs with different structures of collaboration. We also compared CURE student responses to the responses of senior honors thesis students who had been conducting authentic research. Five themes emerged in response to students' conceptions of collaboration. Comparing two CURE courses, we found that students' conceptions of collaboration were varied within each individual CURE, as well as what students were leaving with compared to the other CURE course. Looking at how student responses compared between 5 different themes, including "Different Perspectives", "Validate/Verify Results", "Compare Results", "Requires Different Expertise", and "Compare results", students appeared to be thinking about collaboration in distinct different ways by lack of continuity in the amount of students discussing each of these among the classes. In addition, we found that student responses in each of the CURE courses were not significantly different for any of the themes except "Different Expertise" compared to the graduating seniors. However, due to the small (n) that the graduating seniors group had, 22, compared to each of the CURE classes composing of 155 and 98 students, this comparison must be taken in a preliminary manner. Overall, students thought differently about collaboration between different CUREs. Still, a gap filling what it means to "collaborate", and whether the structures of CUREs are effective to portray collaboration are still necessary to fully elaborate on this paper's findings.
ContributorsWassef, Cyril Alexander (Author) / Brownell, Sara (Thesis director) / Stout, Valerie (Committee member) / Cooper, Katelyn (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
133791-Thumbnail Image.png
Description

Regional and geographical differences may explain variability in menopausal symptom occurrence due to development of climate-specific thermoneutral zones leading to population-specific hot flash frequencies. Limited information available regarding menopausal symptoms in underserved women living in extreme heat.

Understanding the perception of menopausal symptoms in underserved women living in extreme heat regions

Regional and geographical differences may explain variability in menopausal symptom occurrence due to development of climate-specific thermoneutral zones leading to population-specific hot flash frequencies. Limited information available regarding menopausal symptoms in underserved women living in extreme heat.

Understanding the perception of menopausal symptoms in underserved women living in extreme heat regions to identify if heat impacts perception of menopausal symptoms was the objective of this study. Women in free, low-income, and homeless clinics in Phoenix were surveyed during summer and winter months using a self-administered, written questionnaire including demographic, climate and menopause related questions, including the Green Climacteric Scale (GCS).

A total of 139 predominantly Hispanic (56 %), uninsured (53 %), menopausal (56 %), mid-aged (mean 49.9, SD 10.3) women were surveyed— 36% were homeless or in shelters. Most women were not on menopausal hormone therapy (98 %). Twenty-two percent reported hot flashes and 26% night sweats. Twenty-five percent of women reported previously becoming ill from heat. More women thought season influenced menopausal symptoms during summer than winter (41 % vs. 14 %, p = 0.0009). However, majority of women did not think temperature outside influenced their menopausal symptoms and that did not differ by season (73 % in winter vs. 60% in summer, p=0.1094). No statistically significant differences seen for vasomotor symptoms between winter and summer months.

Regional and geographical differences may be key in understanding the variability in menopausal symptoms. Regardless of season, the menopausal, underserved and homeless women living in Arizona reported few vasomotor symptoms. In the summer, they were more likely to report that the season influenced their menopausal symptoms rather than temperature suggesting an influence of the season on symptom perception.

ContributorsMukarram, Mahnoor (Author) / Hondula, David M. (Thesis director) / Kling, Juliana (Committee member) / Department of Psychology (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
160731-Thumbnail Image.png
Description

The City of Phoenix Street Transportation Department partnered with the Rob and Melani Walton Sustainability Solutions Service at Arizona State University (ASU) and researchers from various ASU schools to evaluate the effectiveness, performance, and community perception of the new pavement coating. The data collection and analysis occurred across multiple neighborhoods

The City of Phoenix Street Transportation Department partnered with the Rob and Melani Walton Sustainability Solutions Service at Arizona State University (ASU) and researchers from various ASU schools to evaluate the effectiveness, performance, and community perception of the new pavement coating. The data collection and analysis occurred across multiple neighborhoods and at varying times across days and/or months over the course of one year (July 15, 2020–July 14, 2021), allowing the team to study the impacts of the surface treatment under various weather conditions.

Created2021-09
171906-Thumbnail Image.png
Description
Infrastructure systems are facing non-stationary challenges that stem from climate change and the increasingly complex interactions between the social, ecological, and technological systems (SETSs). It is crucial for transportation infrastructures—which enable residents to access opportunities and foster prosperity, quality of life, and social connections—to be resilient under these non-stationary challenges.

Infrastructure systems are facing non-stationary challenges that stem from climate change and the increasingly complex interactions between the social, ecological, and technological systems (SETSs). It is crucial for transportation infrastructures—which enable residents to access opportunities and foster prosperity, quality of life, and social connections—to be resilient under these non-stationary challenges. Vulnerability assessment (VA) examines the potential consequences a system is likely to experience due to exposure to perturbation or stressors and lack of the capacity to adapt. Post-fire debris flow and heat represent particularly challenging problems for infrastructure and users in the arid U.S. West. Post-fire debris flow, which is manifested with heat and drought, produces powerful runoff threatening physical transportation infrastructures. And heat waves have devastating health effects on transportation infrastructure users, including increased mortality rates. VA anticipates the potential consequences of these perturbations and enables infrastructure stakeholders to improve the system's resilience. The current transportation climate VA—which only considers a single direct climate stressor on the infrastructure—falls short of addressing the wildfire and heat challenges. This work proposes advanced transportation climate VA methods to address the complex and multiple climate stressors and the vulnerability of infrastructure users. Two specific regions were chosen to carry out the progressive transportation climate VA: 1) the California transportation networks’ vulnerability to post-fire debris flows, and 2) the transportation infrastructure user’s vulnerability to heat exposure in Phoenix.
ContributorsLi, Rui (Author) / Chester, Mikhail V. (Thesis advisor) / Middel, Ariane (Committee member) / Hondula, David M. (Committee member) / Pendyala, Ram (Committee member) / Arizona State University (Publisher)
Created2022
189328-Thumbnail Image.png
Description
Evolution is a key feature of undergraduate biology education: the AmericanAssociation for the Advancement of Science (AAAS) has identified evolution as one of the five core concepts of biology, and it is relevant to a wide array of biology-related careers. If biology instructors want students to use evolution to address scientific challenges post-graduation,

Evolution is a key feature of undergraduate biology education: the AmericanAssociation for the Advancement of Science (AAAS) has identified evolution as one of the five core concepts of biology, and it is relevant to a wide array of biology-related careers. If biology instructors want students to use evolution to address scientific challenges post-graduation, students need to be able to apply evolutionary principles to real-life situations, and accept that the theory of evolution is the best scientific explanation for the unity and diversity of life on Earth. In order to help students progress on both fronts, biology education researchers need surveys that measure evolution acceptance and assessments that measure students’ ability to apply evolutionary concepts. This dissertation improves the measurement of student understanding and acceptance of evolution by (1) developing a novel Evolutionary Medicine Assessment that measures students’ ability to apply the core principles of Evolutionary Medicine to a variety of health-related scenarios, (2) reevaluating existing measures of student evolution acceptance by using student interviews to assess response process validity, and (3) correcting the validity issues identified on the most widely-used measure of evolution acceptance - the Measure of Acceptance of the Theory of Evolution (MATE) - by developing and validating a revised version of this survey: the MATE 2.0.
ContributorsMisheva, Anastasia Taya (Author) / Brownell, Sara (Thesis advisor) / Barnes, Elizabeth (Committee member) / Collins, James (Committee member) / Cooper, Katelyn (Committee member) / Sterner, Beckett (Committee member) / Arizona State University (Publisher)
Created2023
Description

En la zona metropolitana de Phoenix, el calor urbano está afectando la salud, la seguridad y la economía y se espera que estos impactos empeoren con el tiempo. Se prevé que el número de días por encima de 110˚F aumentará más del doble para el 2060. En mayo de 2017,

En la zona metropolitana de Phoenix, el calor urbano está afectando la salud, la seguridad y la economía y se espera que estos impactos empeoren con el tiempo. Se prevé que el número de días por encima de 110˚F aumentará más del doble para el 2060. En mayo de 2017, The Nature Conservancy, el Departamento de Salud Pública del condado de Maricopa, Central Arizona Conservation Alliance, la Red de Investigación en Sostenibilidad sobre la Resiliencia Urbana a Eventos Extremos, el Centro de Investigación del Clima Urbano de Arizona State University y el Center for Whole Communities lanzaron un proceso participativo de planificación de acciones contra el calor para identificar tanto estrategias de mitigación como de adaptación a fin de reducir directamente el calor y mejorar la capacidad de los residentes para lidiar con el calor. Las organizaciones comunitarias con relaciones existentes en tres vecindarios seleccionados para la planificación de acciones contra el calor se unieron más tarde al equipo del proyecto: Phoenix Revitalization Corporation, RAILMesa y Puente Movement. Más allá de construir un plan de acción comunitario contra el calor y completar proyectos de demostración, este proceso participativo fue diseñado para desarrollar conciencia, iniciativa y cohesión social en las comunidades subrepresentadas. Asimismo el proceso de planificación de acciones contra el calor fue diseñado para servir como modelo para esfuerzos futuros de resiliencia al calor y crear una visión local, contextual y culturalmente apropiada de un futuro más seguro y saludable. El método iterativo de planificación y participación utilizado por el equipo del proyecto fortaleció las relaciones dentro y entre los vecindarios, las organizaciones comunitarias, los responsables de la toma de decisiones y el equipo núcleo, y combinó la sabiduría de la narración de historias y la evidencia científica para comprender mejor los desafíos actuales y futuros que enfrentan los residentes durante eventos de calor extremo. Como resultado de tres talleres en cada comunidad, los residentes presentaron ideas que quieren ver implementadas para aumentar su comodidad y seguridad térmica durante los días de calor extremo.

Como se muestra a continuación, las ideas de los residentes se interceptaron en torno a conceptos similares, pero las soluciones específicas variaron entre los vecindarios. Por ejemplo, a todos los vecindarios les gustaría agregar sombra a sus corredores peatonales, pero variaron las preferencias para la ubicación de las mejoras para dar sombra. Algunos vecindarios priorizaron las rutas de transporte público, otros priorizaron las rutas utilizadas por los niños en su camino a la escuela y otros quieren paradas de descanso con sombra en lugares clave. Surgieron cuatro temas estratégicos generales en los tres vecindarios: promover y educar; mejorar la comodidad/capacidad de afrontamiento; mejorar la seguridad; fortalecer la capacidad. Estos temas señalan que existen serios desafíos de seguridad contra el calor en la vida diaria de los residentes y que la comunidad, los negocios y los sectores responsables de la toma de decisión deben abordar esos desafíos.

Los elementos del plan de acción contra el calor están diseñados para incorporarse a otros esfuerzos para aliviar el calor, crear ciudades resilientes al clima y brindar salud y seguridad pública. Los socios de implementación del plan de acción contra el calor provienen de la región de la zona metropolitana de Phoenix, y se brindan recomendaciones para apoyar la transformación a una ciudad más fresca.

Para ampliar la escala de este enfoque, los miembros del equipo del proyecto recomiendan a) compromiso continuo e inversiones en estos vecindarios para implementar el cambio señalado como vital por los residentes, b) repetir el proceso de planificación de acción contra el calor con líderes comunitarios en otros vecindarios, y c) trabajar con las ciudades, los planificadores urbanos y otras partes interesadas para institucionalizar este proceso, apoyando las políticas y el uso de las métricas propuestas para crear comunidades más frescas.

ContributorsMesserschmidt, Maggie (Contributor) / Guardaro, Melissa (Contributor) / White, Jessica R. (Contributor) / Berisha, Vjollca (Contributor) / Hondula, David M. (Contributor) / Feagan, Mathieu (Contributor) / Grimm, Nancy (Contributor) / Beule, Stacie (Contributor) / Perea, Masavi (Contributor) / Ramirez, Maricruz (Contributor) / Olivas, Eva (Contributor) / Bueno, Jessica (Contributor) / Crummey, David (Contributor) / Winkle, Ryan (Contributor) / Rothballer, Kristin (Contributor) / Mocine-McQueen, Julian (Contributor) / Maurer, Maria (Artist) / Coseo, Paul (Artist) / Crank, Peter J (Designer) / Broadbent, Ashley (Designer) / McCauley, Lisa (Designer) / Nature's Cooling Systems Project (Contributor) / Nature Conservancy (U.S.) (Contributor) / Phoenix Revitalization Corporation (Contributor) / Puente Movement (Contributor) / Maricopa County (Ariz.). Department of Public Health (Contributor) / Central Arizona Conservation Alliance (Contributor) / Arizona State University. Urban Climate Research Center (Contributor) / Arizona State University. Urban Resilience to Extremes Sustainability Research Network (Contributor) / Center for Whole Communities (Contributor) / RAILmesa (Contributor) / Vitalyst Health Foundation (Funder)
Created2022
162992-Thumbnail Image.png
Description

According to the Centers for Disease Control and Prevention (CDC), more people die in the U.S. from heat than from all other natural disasters combined. According to the Environmental Protection Agency (EPA), more than 1,300 deaths per year in the United States are due to extreme heat. Arizona, California and

According to the Centers for Disease Control and Prevention (CDC), more people die in the U.S. from heat than from all other natural disasters combined. According to the Environmental Protection Agency (EPA), more than 1,300 deaths per year in the United States are due to extreme heat. Arizona, California and Texas are the three states with the highest burden, accounting for 43% of all heat-related deaths according to the CDC.

Although only 5% of housing in Maricopa County, Arizona, is mobile homes, approximately 30% of indoor heat-related deaths occur in these homes. Thus, the residents of mobile homes in Maricopa County are disproportionately affected by heat. Mobile home residents are extremely exposed to heat due to the high density of mobile home parks, poor construction of dwellings, lack of vegetation, socio-demographic features and not being eligible to get utility and financial assistance.

We researched numerous solutions across different domains that could help build the heat resilience of mobile home residents. As a result we found 50 different solutions for diverse stakeholders, budgets and available resources. The goal of this toolbox is to present these solutions and to explain how to apply them in order to get the most optimal result and build About this Solutions Guide People who live in mobile homes are 6 to 8 times more likely to die of heat-associated deaths. heat resilience for mobile home residents. These solutions were designed as a coordinated set of actions for everyone — individual households, mobile home residents, mobile home park owners, cities and counties, private businesses and nonprofits serving mobile home parks, and other stakeholders — to be able to contribute to heat mitigation for mobile home residents.

When we invest in a collective, coordinated suite of solutions that are designed specifically to address the heat vulnerability of mobile homes residents, we can realize a resilience dividend in maintaining affordable, feasible, liveable housing for the 20 million Americans who choose mobile homes and manufactured housing as their place to live and thrive.

ContributorsVarfalameyeva, Katsiaryna (Author) / Solís, Patricia (Author) / Phillips, Lora A. (Author) / Charley, Elisha (Author) / Hondula, David M. (Author) / Kear, Mark (Author)
Created2021
167589-Thumbnail Image.png
Description

BACKGROUND: The City of Phoenix initiated the HeatReady program in 2018 to prepare for extreme heat, as there was no official tool, framework, or mechanism at the city level to manage extreme heat. The current landscape of heat safety culture in schools, which are critical community hubs, has received less

BACKGROUND: The City of Phoenix initiated the HeatReady program in 2018 to prepare for extreme heat, as there was no official tool, framework, or mechanism at the city level to manage extreme heat. The current landscape of heat safety culture in schools, which are critical community hubs, has received less illumination. HeatReady Schools—a critical component of a HeatReady City—are those that are increasingly able to identify, prepare for, mitigate, track, and respond to the negative impacts of schoolgrounds heat. However, minimal attention has been given to formalize heat preparedness in schools to mitigate high temperatures and health concerns in schoolchildren, a heat-vulnerable population. This study set out to understand heat perceptions, (re)actions, and recommendations of key stakeholders and to identify critical themes around heat readiness. METHODS: An exploratory sequential mixed-methods case study approach was used. These methods focused on acquiring new insight on heat perceptions at elementary schools through semi-structured interviews using thematic analysis and the Delphi panel. Participants included public health professionals and school community members at two elementary schools—one public charter, one public—in South Phoenix, Arizona, a region that has been burdened historically with inequitable distribution of heat resources due to environmental racism and injustices. RESULTS: Findings demonstrated that 1) current heat safety resources are available but not fully utilized within the school sites, 2) expert opinions support that extreme heat readiness plans must account for site-specific needs, particularly education as a first step, and 3) students are negatively impacted by the effects of extreme heat, whether direct or indirect, both inside and outside the classroom. CONCLUSIONS: From key informant interviews and a Delphi panel, a list of 30 final recommendations were developed as important actions to be taken to become “HeatReady.” Future work will apply these recommendations in a HeatReady School Growth Tool that schools can tailor be to their individual needs to improve heat safety and protection measures at schools.

ContributorsShortridge, Adora (Author) / Walker, William VI (Author) / White, Dave (Committee member) / Guardaro, Melissa (Committee member) / Hondula, David M. (Committee member) / Vanos, Jennifer (Committee member) / School of Sustainability (Contributor)
Created2022-04-18