Matching Items (168)
Filtering by

Clear all filters

135353-Thumbnail Image.png
Description
Research on human grasp typically involves the grasp of objects designed for the study of fingertip forces. Instrumented objects for such studies have often been designed for the simulation of functional tasks, such as feeding oneself, or for rigidity such that the objects do not deform when grasped. The goal

Research on human grasp typically involves the grasp of objects designed for the study of fingertip forces. Instrumented objects for such studies have often been designed for the simulation of functional tasks, such as feeding oneself, or for rigidity such that the objects do not deform when grasped. The goal of this thesis was to design a collapsible, instrumented object to study grasp of breakable objects. Such an object would enable experiments on human grip responses to unexpected finger-object events as well as anticipatory mechanisms once object fragility has been observed. The collapsible object was designed to be modular to allow for properties such as friction and breaking force to be altered. The instrumented object could be used to study both human and artificial grasp.
ContributorsTorrez, Troy (Author) / Santos, Veronica (Thesis director) / Santello, Marco (Committee member) / Artemiadis, Panagiotis (Committee member) / Barrett, The Honors College (Contributor)
Created2012-05
134461-Thumbnail Image.png
Description
The purpose of this paper was to systematically review current literature regarding the effect of hand splints on aesthetic outcomes for individuals with acquired hand deformities. Hand splints vary in form and function, and are used to maintain or ameliorate hand function and aesthetics. A literature search was performed on

The purpose of this paper was to systematically review current literature regarding the effect of hand splints on aesthetic outcomes for individuals with acquired hand deformities. Hand splints vary in form and function, and are used to maintain or ameliorate hand function and aesthetics. A literature search was performed on peer-reviewed publications that used splinting as an intervention for conservative hand improvement. Evidence from ten randomized clinical trials (published from 2003 to 2015) was evaluated for aesthetic improvement among a total of 659 subjects. Cosmetic outcomes were analyzed by a change in angle measurements, such as extensor lag, ulnar deviation, and passive and active range of motion. Of these ten studies, five focused on hand deformities caused by neurological impairment, while the other five measured those with musculoskeletal complications. Only two of the ten studies concluded that splinting could aesthetically improve the hands, and only one of these reporting statistical significance in its data. The data was not only limited in quantity, but was presented in heterogeneous formats. There was an extensive variation in measured outcomes, intervention protocols, follow-up times, and many other aspects of the studies; this dissimilarity led to difficulty in performing a systematic assessment. The majority of evidence concludes that splinting does not improve the appearance of deformities, however none directly investigated this measure. Therefore, further RCTs that include measurements of cosmetic traits are necessary to better quantify the effect of splinting for management of hand deformities. This review was the first of its kind to evaluate the correction of hand deformities using splints as an intervention.
ContributorsVale, Nicholas Marshall (Author) / Santello, Marco (Thesis director) / Skiba, Jeffry (Committee member) / Harrington Bioengineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor, Contributor) / School of Biological and Health Systems Engineering (Contributor)
Created2017-05
152126-Thumbnail Image.png
Description
Video object segmentation (VOS) is an important task in computer vision with a lot of applications, e.g., video editing, object tracking, and object based encoding. Different from image object segmentation, video object segmentation must consider both spatial and temporal coherence for the object. Despite extensive previous work, the problem is

Video object segmentation (VOS) is an important task in computer vision with a lot of applications, e.g., video editing, object tracking, and object based encoding. Different from image object segmentation, video object segmentation must consider both spatial and temporal coherence for the object. Despite extensive previous work, the problem is still challenging. Usually, foreground object in the video draws more attention from humans, i.e. it is salient. In this thesis we tackle the problem from the aspect of saliency, where saliency means a certain subset of visual information selected by a visual system (human or machine). We present a novel unsupervised method for video object segmentation that considers both low level vision cues and high level motion cues. In our model, video object segmentation can be formulated as a unified energy minimization problem and solved in polynomial time by employing the min-cut algorithm. Specifically, our energy function comprises the unary term and pair-wise interaction energy term respectively, where unary term measures region saliency and interaction term smooths the mutual effects between object saliency and motion saliency. Object saliency is computed in spatial domain from each discrete frame using multi-scale context features, e.g., color histogram, gradient, and graph based manifold ranking. Meanwhile, motion saliency is calculated in temporal domain by extracting phase information of the video. In the experimental section of this thesis, our proposed method has been evaluated on several benchmark datasets. In MSRA 1000 dataset the result demonstrates that our spatial object saliency detection is superior to the state-of-art methods. Moreover, our temporal motion saliency detector can achieve better performance than existing motion detection approaches in UCF sports action analysis dataset and Weizmann dataset respectively. Finally, we show the attractive empirical result and quantitative evaluation of our approach on two benchmark video object segmentation datasets.
ContributorsWang, Yilin (Author) / Li, Baoxin (Thesis advisor) / Wang, Yalin (Committee member) / Cleveau, David (Committee member) / Arizona State University (Publisher)
Created2013
152128-Thumbnail Image.png
Description
Learning from high dimensional biomedical data attracts lots of attention recently. High dimensional biomedical data often suffer from the curse of dimensionality and have imbalanced class distributions. Both of these features of biomedical data, high dimensionality and imbalanced class distributions, are challenging for traditional machine learning methods and may affect

Learning from high dimensional biomedical data attracts lots of attention recently. High dimensional biomedical data often suffer from the curse of dimensionality and have imbalanced class distributions. Both of these features of biomedical data, high dimensionality and imbalanced class distributions, are challenging for traditional machine learning methods and may affect the model performance. In this thesis, I focus on developing learning methods for the high-dimensional imbalanced biomedical data. In the first part, a sparse canonical correlation analysis (CCA) method is presented. The penalty terms is used to control the sparsity of the projection matrices of CCA. The sparse CCA method is then applied to find patterns among biomedical data sets and labels, or to find patterns among different data sources. In the second part, I discuss several learning problems for imbalanced biomedical data. Note that traditional learning systems are often biased when the biomedical data are imbalanced. Therefore, traditional evaluations such as accuracy may be inappropriate for such cases. I then discuss several alternative evaluation criteria to evaluate the learning performance. For imbalanced binary classification problems, I use the undersampling based classifiers ensemble (UEM) strategy to obtain accurate models for both classes of samples. A small sphere and large margin (SSLM) approach is also presented to detect rare abnormal samples from a large number of subjects. In addition, I apply multiple feature selection and clustering methods to deal with high-dimensional data and data with highly correlated features. Experiments on high-dimensional imbalanced biomedical data are presented which illustrate the effectiveness and efficiency of my methods.
ContributorsYang, Tao (Author) / Ye, Jieping (Thesis advisor) / Wang, Yalin (Committee member) / Davulcu, Hasan (Committee member) / Arizona State University (Publisher)
Created2013
171764-Thumbnail Image.png
Description
This dissertation constructs a new computational processing framework to robustly and precisely quantify retinotopic maps based on their angle distortion properties. More generally, this framework solves the problem of how to robustly and precisely quantify (angle) distortions of noisy or incomplete (boundary enclosed) 2-dimensional surface to surface mappings. This framework

This dissertation constructs a new computational processing framework to robustly and precisely quantify retinotopic maps based on their angle distortion properties. More generally, this framework solves the problem of how to robustly and precisely quantify (angle) distortions of noisy or incomplete (boundary enclosed) 2-dimensional surface to surface mappings. This framework builds upon the Beltrami Coefficient (BC) description of quasiconformal mappings that directly quantifies local mapping (circles to ellipses) distortions between diffeomorphisms of boundary enclosed plane domains homeomorphic to the unit disk. A new map called the Beltrami Coefficient Map (BCM) was constructed to describe distortions in retinotopic maps. The BCM can be used to fully reconstruct the original target surface (retinal visual field) of retinotopic maps. This dissertation also compared retinotopic maps in the visual processing cascade, which is a series of connected retinotopic maps responsible for visual data processing of physical images captured by the eyes. By comparing the BCM results from a large Human Connectome project (HCP) retinotopic dataset (N=181), a new computational quasiconformal mapping description of the transformed retinal image as it passes through the cascade is proposed, which is not present in any current literature. The description applied on HCP data provided direct visible and quantifiable geometric properties of the cascade in a way that has not been observed before. Because retinotopic maps are generated from in vivo noisy functional magnetic resonance imaging (fMRI), quantifying them comes with a certain degree of uncertainty. To quantify the uncertainties in the quantification results, it is necessary to generate statistical models of retinotopic maps from their BCMs and raw fMRI signals. Considering that estimating retinotopic maps from real noisy fMRI time series data using the population receptive field (pRF) model is a time consuming process, a convolutional neural network (CNN) was constructed and trained to predict pRF model parameters from real noisy fMRI data
ContributorsTa, Duyan Nguyen (Author) / Wang, Yalin (Thesis advisor) / Lu, Zhong-Lin (Committee member) / Hansford, Dianne (Committee member) / Liu, Huan (Committee member) / Li, Baoxin (Committee member) / Arizona State University (Publisher)
Created2022
168694-Thumbnail Image.png
Description
Retinotopic map, the map between visual inputs on the retina and neuronal activation in brain visual areas, is one of the central topics in visual neuroscience. For human observers, the map is typically obtained by analyzing functional magnetic resonance imaging (fMRI) signals of cortical responses to slowly moving visual stimuli

Retinotopic map, the map between visual inputs on the retina and neuronal activation in brain visual areas, is one of the central topics in visual neuroscience. For human observers, the map is typically obtained by analyzing functional magnetic resonance imaging (fMRI) signals of cortical responses to slowly moving visual stimuli on the retina. Biological evidences show the retinotopic mapping is topology-preserving/topological (i.e. keep the neighboring relationship after human brain process) within each visual region. Unfortunately, due to limited spatial resolution and the signal-noise ratio of fMRI, state of art retinotopic map is not topological. The topic was to model the topology-preserving condition mathematically, fix non-topological retinotopic map with numerical methods, and improve the quality of retinotopic maps. The impose of topological condition, benefits several applications. With the topological retinotopic maps, one may have a better insight on human retinotopic maps, including better cortical magnification factor quantification, more precise description of retinotopic maps, and potentially better exam ways of in Ophthalmology clinic.
ContributorsTu, Yanshuai (Author) / Wang, Yalin (Thesis advisor) / Lu, Zhong-Lin (Committee member) / Crook, Sharon (Committee member) / Yang, Yezhou (Committee member) / Zhang, Yu (Committee member) / Arizona State University (Publisher)
Created2022
171979-Thumbnail Image.png
Description
Neural tissue is a delicate system comprised of neurons and their synapses, glial cells for support, and vasculature for oxygen and nutrient delivery. This complexity ultimately gives rise to the human brain, a system researchers have become increasingly interested in replicating for artificial intelligence purposes. Some have even gone so

Neural tissue is a delicate system comprised of neurons and their synapses, glial cells for support, and vasculature for oxygen and nutrient delivery. This complexity ultimately gives rise to the human brain, a system researchers have become increasingly interested in replicating for artificial intelligence purposes. Some have even gone so far as to use neuronal cultures as computing hardware, but utilizing an environment closer to a living brain means having to grapple with the same issues faced by clinicians and researchers trying to treat brain disorders. Most outstanding among these are the problems that arise with invasive interfaces. Optical techniques that use fluorescent dyes and proteins have emerged as a solution for noninvasive imaging with single-cell resolution in vitro and in vivo, but feeding in information in the form of neuromodulation still requires implanted electrodes. The implantation process of these electrodes damages nearby neurons and their connections, causes hemorrhaging, and leads to scarring and gliosis that diminish efficacy. Here, a new approach for noninvasive neuromodulation with high spatial precision is described. It makes use of a combination of ultrasound, high frequency acoustic energy that can be focused to submillimeter regions at significant depths, and electric fields, an effective tool for neuromodulation that lacks spatial precision when used in a noninvasive manner. The hypothesis is that, when combined in a specific manner, these will lead to nonlinear effects at neuronal membranes that cause cells only in the region of overlap to be stimulated. Computational modeling confirmed this combination to be uniquely stimulating, contingent on certain physical effects of ultrasound on cell membranes. Subsequent in vitro experiments led to inconclusive results, however, leaving the door open for future experimentation with modified configurations and approaches. The specific combination explored here is also not the only untested technique that may achieve a similar goal.
ContributorsNester, Elliot (Author) / Wang, Yalin (Thesis advisor) / Muthuswamy, Jitendran (Committee member) / Towe, Bruce (Committee member) / Arizona State University (Publisher)
Created2022
171902-Thumbnail Image.png
Description
Beta-Amyloid(Aβ) plaques and tau protein tangles in the brain are now widely recognized as the defining hallmarks of Alzheimer’s disease (AD), followed by structural atrophy detectable on brain magnetic resonance imaging (MRI) scans. However, current methods to detect Aβ/tau pathology are either invasive (lumbar puncture) or quite costly and not

Beta-Amyloid(Aβ) plaques and tau protein tangles in the brain are now widely recognized as the defining hallmarks of Alzheimer’s disease (AD), followed by structural atrophy detectable on brain magnetic resonance imaging (MRI) scans. However, current methods to detect Aβ/tau pathology are either invasive (lumbar puncture) or quite costly and not widely available (positron emission tomography (PET)). And one of the particular neurodegenerative regions is the hippocampus to which the influence of Aβ/tau on has been one of the research projects focuses in the AD pathophysiological progress. In this dissertation, I proposed three novel machine learning and statistical models to examine subtle aspects of the hippocampal morphometry from MRI that are associated with Aβ /tau burden in the brain, measured using PET images. The first model is a novel unsupervised feature reduction model to generate a low-dimensional representation of hippocampal morphometry for each individual subject, which has superior performance in predicting Aβ/tau burden in the brain. The second one is an efficient federated group lasso model to identify the hippocampal subregions where atrophy is strongly associated with abnormal Aβ/Tau. The last one is a federated model for imaging genetics, which can identify genetic and transcriptomic influences on hippocampal morphometry. Finally, I stated the results of these three models that have been published or submitted to peer-reviewed conferences and journals.
ContributorsWu, Jianfeng (Author) / Wang, Yalin (Thesis advisor) / Li, Baoxin (Committee member) / Liang, Jianming (Committee member) / Wang, Junwen (Committee member) / Wu, Teresa (Committee member) / Arizona State University (Publisher)
Created2022
189274-Thumbnail Image.png
Description
Structural Magnetic Resonance Imaging analysis is a vital component in the study of Alzheimer’s Disease pathology and several techniques exist as part of the existing research conducted. In particular, volumetric approaches in this field are known to be beneficial due to the increased capability to express morphological characteristics when compared

Structural Magnetic Resonance Imaging analysis is a vital component in the study of Alzheimer’s Disease pathology and several techniques exist as part of the existing research conducted. In particular, volumetric approaches in this field are known to be beneficial due to the increased capability to express morphological characteristics when compared to manifold methods. To aid in the improvement of the field, this paper aims to propose an intrinsic volumetric conic system that can be applied to bounded volumetric meshes to enable a more effective study of subjects. The computation of the metric involves the use of heat kernel theory and conformal parameterization on genus-0 surfaces extended to a volumetric domain. Additionally, this paper also explores the use of the ’TetCNN’ architecture on the classification of hippocampal tetrahedral meshes to detect features that correspond to Alzheimer’s indicators. The model tested was able to achieve remarkable results with a measured classification accuracy of above 90% in the task of differentiating between subjects diagnosed with Alzheimer’s and normal control subjects.
ContributorsGeorge, John Varghese (Author) / Wang, Yalin (Thesis advisor) / Hansford, Dianne (Committee member) / Gupta, Vikash (Committee member) / Arizona State University (Publisher)
Created2023
190775-Thumbnail Image.png
Description
Although previous studies have elucidated the role of position feedback in the regulation of movement, the specific contribution of Golgi tendon organs (GTO) in force feedback, especially in stabilizing voluntary limb movements, has remained theoretical due to limitations in experimental techniques. This study aims to establish force feedback regulation mediated

Although previous studies have elucidated the role of position feedback in the regulation of movement, the specific contribution of Golgi tendon organs (GTO) in force feedback, especially in stabilizing voluntary limb movements, has remained theoretical due to limitations in experimental techniques. This study aims to establish force feedback regulation mediated by GTO afferent signals in two phases. The first phase of this study consisted of simulations using a neuromusculoskeletal model of the monoarticular elbow flexor (MEF) muscle group, assess the impact of force feedback in maintaining steady state interaction forces against variable environmental stiffness. Three models were trained to accurately reach an interaction force of 40N, 50N and 60N respectively, using a fixed stiffness level. Next, the environment stiffness was switched between untrained levels for open loop (OL) and closed loop (CL) variants of the same model. Results showed that compared to OL, CL showed decreased force deviations by 10.43%, 12.11% and 13.02% for each of the models. Most importantly, it is also observed that in the absence of force feedback, environment stiffness is found to have an effect on the interaction force. In the second phase, human subjects were engaged in experiments utilizing an instrumented elbow exoskeleton that applied loads to the MEF muscle group, closely mimicking the simulation conditions. The experiments consisted of reference, blind and catch trial types, and 3 stiffness levels. Subjects were first trained to reach for a predetermined target force. During catch trials, stiffness levels were randomized between reaches. Responses obtained from these experiments showed that subjects were able to regulate forces with no significant effects of trial type or stiffness level. Since experimental results align closely with that of closed loop model simulations, the presence of force feedback mechanisms mediated by GTO within the human neuromuscular system is established. This study not only unveils the critical involvement of GTO in force feedback but also emphasizes the importance of understanding these mechanisms for developing advanced neuroprosthetics and rehabilitation strategies, shedding light on the intricate interplay between sensory inputs and motor responses in human proprioception.
ContributorsAbishek, Kevin (Author) / Lee, Hyunglae (Thesis advisor) / Buneo, Christopher (Committee member) / Santello, Marco (Committee member) / Arizona State University (Publisher)
Created2023