Matching Items (85)
Filtering by

Clear all filters

193603-Thumbnail Image.png
Description
Development of the central nervous system is an incredible process that relies on multiple extracellular signaling cues and complex intracellular interactions. Approximately 1500 genes are associated with neurodevelopmental disorders, many of which are linked to a specific biochemical signaling cascade known as Extracellular-Signal Regulated Kinase (ERK1/2). Clearly defined mutations in

Development of the central nervous system is an incredible process that relies on multiple extracellular signaling cues and complex intracellular interactions. Approximately 1500 genes are associated with neurodevelopmental disorders, many of which are linked to a specific biochemical signaling cascade known as Extracellular-Signal Regulated Kinase (ERK1/2). Clearly defined mutations in regulators of the ERK1/2 pathway cause syndromes known as the RASopathies. Symptoms include intellectual disability, developmental delay, cranio-facial and cardiac deficits. Treatments for RASopathies are limited due to an in complete understanding of ERK1/2’s role in brain development. Individuals with Neurofibromatosis Type and Noonan Syndrome, the two most common RASopathies, exhibit aberrant functional and white matter organization in non-invasive imaging studies, however, the contributions of neuronal versus oligodendrocyte deficits to this phenotype are not fully understood. To define the cellular functions of ERK1/2 in motor circuit formation, this body of work focuses on two long-range projection neuron subtypes defined by their neurotransmitter. With genetic mouse models, pathological ERK1/2 in glutamatergic neurons reduces axonal outgrowth, resulting in deficits in activity dependent gene expression and the ability to learn a motor skill task. Restricting pathological ERK1/2 within cortical layer V recapitulates these wiring deficits but not the behavioral learning phenotype. Moreover, it is uncovered that pathological ERK1/2 results in compartmentalized expression pattern of phosphorylated ERK1/2. It is not clear whether ERK1/2 functions are similar in cholinergic neuron populations that mediate attention, memory, and motor control. Basal forebrain cholinergic neuron development relies heavily on NGF-TrKA neurotrophic signaling known to activate ERK1/2. Yet the function of ERK1/2 during cholinergic neuronal specification and differentiation is poorly understood. By selectively deleting ERK1/2 in cholinergic neurons, ERK1/2 is required for activity-dependent maturation of neuromuscular junctions in juvenile mice, but not the establishment of lower motor neuron number. Moreover, ERK1/2 is not required for specification of choline acetyltransferase expressing basal forebrain cholinergic neurons by 14 days of age. However, ERK1/2 may be necessary for BFCN maturation by adulthood. Collectively, these data indicate that glutamatergic neuron-autonomous decreases in long-range axonal outgrowth and modest effects on later stages of cholinergic neuron maintenance may be important aspects of neuropathogenesis in RASopathies.
ContributorsRees, Katherina Pavy (Author) / Newbern, Jason (Thesis advisor) / Olive, Foster (Committee member) / Qiu, Shenfeng (Committee member) / Sattler, Rita (Committee member) / Smith, Brian (Committee member) / Arizona State University (Publisher)
Created2024
187341-Thumbnail Image.png
Description
Effective collaboration and cooperation across difference are at the heart of present and future sustainability challenges and solutions. Collaboration among social groups (intragenerational), across time (intergenerational), and across species (interspecies) is each central to achieving sustainability transitions in the 21st century. In practice, there are three types of

Effective collaboration and cooperation across difference are at the heart of present and future sustainability challenges and solutions. Collaboration among social groups (intragenerational), across time (intergenerational), and across species (interspecies) is each central to achieving sustainability transitions in the 21st century. In practice, there are three types of differences that limit collaboration and cooperation toward sustainability outcomes: differences among social groups, differences across time, and differences across species. Each of these differences have corresponding cognitive biases that challenge collaboration. Social cognitive biases challenge collaboration among social groups; temporal cognitive biases challenge collaboration across time; and anthropocentric cognitive biases challenge collaboration across species. In this work, I present three correctives to collaboration challenges spanning the social, temporal, and species cognitive biases through intervention-specific methods that build beyond traditional framings of empathy, toward social, futures, and ecological empathy. By re-theorizing empathy across these domains, I seek to construct a multidimensional theory of empathy for sustainability, and suggest methods to build it, to bridge differences among people, time horizons, and species for sustainability practice.
ContributorsLambert, Lauren Marie-Jasmine (Author) / Selin, Cynthia (Thesis advisor) / Schoon, Michael (Thesis advisor) / Tomblin, David (Committee member) / Berbés-Blázquez, Marta (Committee member) / Arizona State University (Publisher)
Created2023
187649-Thumbnail Image.png
Description
Wildlife rehabilitation as a practice in the United States exists in a complicated ethical landscape. The Wildlife Rehabilitator's Code of Ethics exists to guide the profession and states that rehabilitators must respect the wildness and maintain the dignity of an animal in their care. This thesis explores the question: How

Wildlife rehabilitation as a practice in the United States exists in a complicated ethical landscape. The Wildlife Rehabilitator's Code of Ethics exists to guide the profession and states that rehabilitators must respect the wildness and maintain the dignity of an animal in their care. This thesis explores the question: How do the attitudes and actions of wildlife rehabilitators exemplify the ways in which they understand and enact respect for an animal’s dignity and wildness while in their care? Additionally, in what circumstances do rehabilitators align and diverge from each other in their interpretation and demonstration of this respect? These questions were answered through a literature review, interviews with rehabilitators, and site visits to wildlife rehabilitation centers in the Phoenix metropolitan area. My results suggest that rehabilitators are aligned in their understanding of respect for wildness and dignity as it applies to the animals in their care that are actively undergoing rehabilitation. Rehabilitators achieved consensus on the idea that they should interact with the animals as little as possible while providing their medically necessary care. Rehabilitators began to diverge when considering the animals in their sanctuary spaces. Specifically, they varied in their perception of wildness in sanctuary animals, which informed how some saw their responsibilities to the animals. Lesser perceived wildness correlated to increased acceptance of forming affectionate relationships with the sanctuary animals, and even feelings of obligation to form these relationships. Based on my research, I argue that the Wildlife Rehabilitator's Code of Ethics should be revised to reflect the specific boundary that wildlife rehabilitators identified in the rehabilitation space and provide substantive guidance as to what respecting wildness and dignity means in this field.
ContributorsBernat, Isabella Elyse (Author) / Minteer, Ben (Thesis advisor) / Ellison, Karin (Committee member) / Schoon, Michael (Committee member) / Arizona State University (Publisher)
Created2023
187847-Thumbnail Image.png
Description
A description of numerical and analytical work pertaining to models that describe the growth and progression of glioblastoma multiforme (GBM), an aggressive form of primary brain cancer. Two reaction-diffusion models are used: the Fisher-Kolmogorov-Petrovsky-Piskunov equation and a 2-population model that divides the tumor into actively proliferating and quiescent (or necrotic)

A description of numerical and analytical work pertaining to models that describe the growth and progression of glioblastoma multiforme (GBM), an aggressive form of primary brain cancer. Two reaction-diffusion models are used: the Fisher-Kolmogorov-Petrovsky-Piskunov equation and a 2-population model that divides the tumor into actively proliferating and quiescent (or necrotic) cells. The numerical portion of this work (chapter 2) focuses on simulating GBM expansion in patients undergoing treatment for recurrence of tumor following initial surgery. The models are simulated on 3-dimensional brain geometries derived from magnetic resonance imaging (MRI) scans provided by the Barrow Neurological Institute. The study consists of 17 clinical time intervals across 10 patients that have been followed in detail, each of whom shows significant progression of tumor over a period of 1 to 3 months on sequential follow up scans. A Taguchi sampling design is implemented to estimate the variability of the predicted tumors to using 144 different choices of model parameters. In 9 cases, model parameters can be identified such that the simulated tumor contains at least 40 percent of the volume of the observed tumor. In the analytical portion of the paper (chapters 3 and 4), a positively invariant region for our 2-population model is identified. Then, a rigorous derivation of the critical patch size associated with the model is performed. The critical patch (KISS) size is the minimum habitat size needed for a population to survive in a region. Habitats larger than the critical patch size allow a population to persist, while smaller habitats lead to extinction. The critical patch size of the 2-population model is consistent with that of the Fisher-Kolmogorov-Petrovsky-Piskunov equation, one of the first reaction-diffusion models proposed for GBM. The critical patch size may indicate that GBM tumors have a minimum size depending on the location in the brain. A theoretical relationship between the size of a GBM tumor at steady-state and its maximum cell density is also derived, which has potential applications for patient-specific parameter estimation based on magnetic resonance imaging data.
ContributorsHarris, Duane C. (Author) / Kuang, Yang (Thesis advisor) / Kostelich, Eric J. (Thesis advisor) / Preul, Mark C. (Committee member) / Crook, Sharon (Committee member) / Gardner, Carl (Committee member) / Arizona State University (Publisher)
Created2023
193465-Thumbnail Image.png
Description
Though controversial in its utility to the scientific study of nonhuman animals, anthropomorphism, or the attribution of human characteristics to a nonhuman being, is omnipresent in our interactions with other animals. Anthropomorphism is undeniably a fixture of modern zoos, but how anthropomorphism relates to zoos’ contributions to conservation is unclear.

Though controversial in its utility to the scientific study of nonhuman animals, anthropomorphism, or the attribution of human characteristics to a nonhuman being, is omnipresent in our interactions with other animals. Anthropomorphism is undeniably a fixture of modern zoos, but how anthropomorphism relates to zoos’ contributions to conservation is unclear. In this dissertation, I investigate these potentially dueling, potentially overlapping, messages within great ape exhibits in accredited zoos. Given the complexity of both anthropomorphism and conservation, this dissertation reveals some nuances of how both play out in zoological spaces. Human psychology literature on anthropomorphism indicates that there are a variety of uses for this lens that benefit humans; from feeling we can understand a confusing animal action, to feeling social connection. Whereas the comparative psychology literature highlights a contested utility of anthropomorphism in studies of nonhuman animals. The main findings from this study are four-fold. Firstly, surveys conducted with zoo visitors show that many bring anthropomorphic beliefs with them on their trek through the zoo. Visitors are prone to viewing great apes as strikingly like humans in terms of emotions, emotional expression, and understanding of the world. Secondly, surveyed zoo visitors who agreed more with anthropomorphic statements also agreed more with statements about feeling interconnected with nature. Thirdly, there is no uniform understanding within the zoo community about how zoo exhibits do or should contribute to conservation efforts given that exhibits have multiple goals, one being the safety and wellness of their animal residents. Fourthly, interviews of zoo staff show that they mediate a variety of messages for zoo visitors and walk a sometimes-divisive line between when it’s acceptable to use anthropomorphic framing to discuss zoo animals and when it’s inaccurate. By leveraging a better understanding of these attitudes and relationships, zoos can further empower their staff to navigate these complex issues and improve their mission-based goal of promoting conservation outcomes by acknowledging the human practices embedded in our perceptions of and interactions with zoo animals. This work speaks to the importance of carefully considering the ways we understand animals in zoos, in the wild, and all the places in-between.
ContributorsLyon, Cassandra (Author) / Minteer, Ben A. (Thesis advisor) / Wynne, Clive D.L. (Committee member) / Maynard, Lily (Committee member) / Schoon, Michael (Committee member) / Arizona State University (Publisher)
Created2024
157429-Thumbnail Image.png
Description
With global environmental systems under increasing Anthropogenic influence, conservationists and environmental managers are under immense pressure to protect and recover the world’s imperiled species and ecosystems. This effort is often motivated by a sense of moral responsibility, either to nature itself, or to the end of promoting human wellbeing over

With global environmental systems under increasing Anthropogenic influence, conservationists and environmental managers are under immense pressure to protect and recover the world’s imperiled species and ecosystems. This effort is often motivated by a sense of moral responsibility, either to nature itself, or to the end of promoting human wellbeing over the long run. In other words, it is the purview of environmental ethics, a branch of applied philosophy that emerged in the 1970s and that for decades has been devoted to understanding and defending an attitude of respect for nature, usually for its own sake. Yet from the very start, environmental ethics has promoted itself as contributing to the resolution of real-world management and policy problems. By most accounts, however, the field has historically failed to deliver on this original promise, and environmental ethicists continue to miss opportunities to make intellectual inroads with key environmental decisionmakers. Inspired by classical and contemporary American philosophers such as Charles Sanders Peirce, William James, John Dewey, and Richard Rorty, I defend in this dissertation the virtues of a more explicitly pragmatic approach to environmental ethics. Specifically, I argue that environmental pragmatism is not only commensurate with pro-environmental attitudes but that it is more likely to lead to viable and sustainable outcomes, particularly in the context of eco-social resilience-building activities (e.g., local experimentation, adaptation, cooperation). In doing so, I call for a recasting of environmental ethics, a project that entails: 1) a conceptual reorientation involving the application of pragmatism applied to environmental problems; 2) a methodological approach linking a pragmatist environmentalism to the tradition and process of adaptive co-management; and 3) an empirical study of stakeholder values and perspectives in conservation collaboratives in Arizona. I conclude that a more pragmatic environmental ethics has the potential to bring a powerful set of ethical and methodological tools to bear in real-world management contexts and, where appropriate, can ground and justify coordinated conservation efforts. Finally, this research responds to critics who suggest that, because it strays too far from the ideological purity of traditional environmental ethics, the pragmatic decision-making process will, in the long run, weaken rather than bolster our commitment to conservation and environmental protection.
ContributorsRojas, Christopher A (Author) / Minteer, Ben A (Thesis advisor) / Carr Kelman, Candice (Committee member) / Kinzig, Ann (Committee member) / Schoon, Michael (Committee member) / Arizona State University (Publisher)
Created2019
156939-Thumbnail Image.png
Description
The RASopathies are a collection of developmental diseases caused by germline mutations in components of the RAS/MAPK signaling pathway and is one of the world’s most common set of genetic diseases. A majority of these mutations result in an upregulation of RAS/MAPK signaling and cause a variety of both physical

The RASopathies are a collection of developmental diseases caused by germline mutations in components of the RAS/MAPK signaling pathway and is one of the world’s most common set of genetic diseases. A majority of these mutations result in an upregulation of RAS/MAPK signaling and cause a variety of both physical and neurological symptoms. Neurodevelopmental symptoms of the RASopathies include cognitive and motor delays, learning and intellectual disabilities, and various behavioral problems. Recent noninvasive imaging studies have detected widespread abnormalities within white matter tracts in the brains of RASopathy patients. These abnormalities are believed to be indicative of underlying connectivity deficits and a possible source of the behavioral and cognitive deficits. To evaluate these long-range connectivity and behavioral issues in a cell-autonomous manner, MEK1 loss- and gain-of-function (LoF and GoF) mutations were induced solely in the cortical glutamatergic neurons using a Nex:Cre mouse model. Layer autonomous effects of the cortex were also tested in the GoF mouse using a layer 5 specific Rbp4:Cre mouse. Immunohistochemical analysis showed that activated ERK1/2 (P-ERK1/2) was expressed in high levels in the axonal compartments and reduced levels in the soma when compared to control mice. Axonal tract tracing using a lipophilic dye and an adeno-associated viral (AAV) tract tracing vector, identified significant corticospinal tract (CST) elongation deficits in the LoF and GoF Nex:Cre mouse and in the GoF Rbp4:Cre mouse. AAV tract tracing was further used to identify significant deficits in axonal innervation of the contralateral cortex, the dorsal striatum, and the hind brain of the Nex:Cre GoF mouse and the contralateral cortex and dorsal striatum of the Rbp4:Cre mouse. Behavioral testing of the Nex:Cre GoF mouse indicated deficits in motor learning acquisition while the Rbp4:Cre GoF mouse showed no failure to acquire motor skills as tested. Analysis of the expression levels of the immediate early gene ARC in Nex:Cre and Rbp4:Cre mice showed a specific reduction in a cell- and layer-autonomous manner. These findings suggest that hyperactivation of the RAS/MAPK pathway in cortical glutamatergic neurons, induces changes to the expression patterns of P-ERK1/2, disrupts axonal elongation and innervation patterns, and disrupts motor learning abilities.
ContributorsBjorklund, George Reed (Author) / Newbern, Jason M (Thesis advisor) / Neisewander, Janet (Committee member) / Smith, Brian (Committee member) / Orchinik, Miles (Committee member) / Mangone, Marco (Committee member) / Arizona State University (Publisher)
Created2018
153017-Thumbnail Image.png
Description
Cell morphology and the distribution of voltage gated ion channels play a major role in determining a neuron's firing behavior, resulting in the specific processing of spatiotemporal synaptic input patterns. Although many studies have provided insight into the computational properties arising from neuronal structure as well as from channel kinetics,

Cell morphology and the distribution of voltage gated ion channels play a major role in determining a neuron's firing behavior, resulting in the specific processing of spatiotemporal synaptic input patterns. Although many studies have provided insight into the computational properties arising from neuronal structure as well as from channel kinetics, no comprehensive theory exists which explains how the interaction of these features shapes neuronal excitability. In this study computational models based on the identified Drosophila motoneuron (MN) 5 are developed to investigate the role of voltage gated ion channels, the impact of their densities and the effects of structural features.

First, a spatially collapsed model is used to develop voltage gated ion channels to study the excitability of the model neuron. Changing the channel densities reproduces different in situ observed firing patterns and induces a switch from resonator to integrator properties. Second, morphologically realistic multicompartment models are studied to investigate the passive properties of MN5. The passive electrical parameters fall in a range that is commonly observed in neurons, MN5 is spatially not compact, but for the single subtrees synaptic efficacy is location independent. Further, different subtrees are electrically independent from each other. Third, a continuum approach is used to formulate a new cable theoretic model to study the output in a dendritic cable with many subtrees, both analytically and computationally. The model is validated, by comparing it to a corresponding model with discrete branches. Further, the approach is demonstrated using MN5 and used to investigate spatially distributions of voltage gated ion channels.
ContributorsBerger, Sandra (Author) / Crook, Sharon (Thesis advisor) / Baer, Steven (Committee member) / Hamm, Thomas (Committee member) / Smith, Brian (Committee member) / Arizona State University (Publisher)
Created2014
153097-Thumbnail Image.png
Description
This dissertation consists of three substantive chapters. The first substantive chapter investigates the premature harvesting problem in fisheries. Traditionally, yield-per-recruit analysis has been used to both assess and address the premature harvesting of fish stocks. However, the fact that fish size often affects the unit price suggests that this approach

This dissertation consists of three substantive chapters. The first substantive chapter investigates the premature harvesting problem in fisheries. Traditionally, yield-per-recruit analysis has been used to both assess and address the premature harvesting of fish stocks. However, the fact that fish size often affects the unit price suggests that this approach may be inadequate. In this chapter, I first synthesize the conventional yield-per-recruit analysis, and then extend this conventional approach by incorporating a size-price function for a revenue-per-recruit analysis. An optimal control approach is then used to derive a general bioeconomic solution for the optimal harvesting of a short-lived single cohort. This approach prevents economically premature harvesting and provides an "optimal economic yield". By comparing the yield- and revenue-per-recruit management strategies with the bioeconomic management strategy, I am able to test the economic efficiency of the conventional yield-per-recruit approach. This is illustrated with a numerical study. It shows that a bioeconomic strategy can significantly improve economic welfare compared with the yield-per-recruit strategy, particularly in the face of high natural mortality. Nevertheless, I find that harvesting on a revenue-per-recruit basis improves management policy and can generate a rent that is close to that from bioeconomic analysis, in particular when the natural mortality is relatively low.

The second substantive chapter explores the conservation potential of a whale permit market under bounded economic uncertainty. Pro- and anti-whaling stakeholders are concerned about a recently proposed, "cap and trade" system for managing the global harvest of whales. Supporters argue that such an approach represents a novel solution to the current gridlock in international whale management. In addition to ethical objections, opponents worry that uncertainty about demand for whale-based products and the environmental benefits of conservation may make it difficult to predict the outcome of a whale share market. In this study, I use population and economic data for minke whales to examine the potential ecological consequences of the establishment of a whale permit market in Norway under bounded but significant economic uncertainty. A bioeconomic model is developed to evaluate the influence of economic uncertainties associated with pro- and anti- whaling demands on long-run steady state whale population size, harvest, and potential allocation. The results indicate that these economic uncertainties, in particular on the conservation demand side, play an important role in determining the steady state ecological outcome of a whale share market. A key finding is that while a whale share market has the potential to yield a wide range of allocations between conservation and whaling interests - outcomes in which conservationists effectively "buy out" the whaling industry seem most likely.

The third substantive chapter examines the sea lice externality between farmed fisheries and wild fisheries. A central issue in the debate over the effect of fish farming on the wild fisheries is the nature of sea lice population dynamics and the wild juvenile mortality rate induced by sea lice infection. This study develops a bioeconomic model that integrates sea lice population dynamics, fish population dynamics, aquaculture and wild capture salmon fisheries in an optimal control framework. It provides a tool to investigate sea lice control policy from the standpoint both of private aquaculture producers and wild fishery managers by considering the sea lice infection externality between farmed and wild fisheries. Numerical results suggest that the state trajectory paths may be quite different under different management regimes, but approach the same steady state. Although the difference in economic benefits is not significant in the particular case considered due to the low value of the wild fishery, I investigate the possibility of levying a tax on aquaculture production for correcting the sea lice externality generated by fish farms.
ContributorsHuang, Biao (Author) / Abbott, Joshua K (Thesis advisor) / Perrings, Charles (Thesis advisor) / Gerber, Leah R. (Committee member) / Muneepeerakul, Rachata (Committee member) / Schoon, Michael (Committee member) / Arizona State University (Publisher)
Created2014
153202-Thumbnail Image.png
Description
Traumatic brain injury (TBI) most frequently occurs in pediatric patients and remains a leading cause of childhood death and disability. Mild TBI (mTBI) accounts for 70-90% of all TBI cases, yet its neuropathophysiology is still poorly understood. While a single mTBI injury can lead to persistent deficits, repeat injuries

Traumatic brain injury (TBI) most frequently occurs in pediatric patients and remains a leading cause of childhood death and disability. Mild TBI (mTBI) accounts for 70-90% of all TBI cases, yet its neuropathophysiology is still poorly understood. While a single mTBI injury can lead to persistent deficits, repeat injuries increase the severity and duration of both acute symptoms and long term deficits. In this study, to model pediatric repetitive mTBI (rmTBI) we subjected unrestrained juvenile animals (post-natal day 20) to repeat weight drop impact. Animals were anesthetized and subjected to sham or rmTBI once per day for 5 days. At 14 days post injury (PID), magnetic resonance imaging (MRI) revealed that rmTBI animals displayed marked cortical atrophy and ventriculomegaly. Specifically, the thickness of the cortex was reduced up to 46% beneath and the ventricles increased up to 970% beneath the impact zone. Immunostaining with the neuron specific marker NeuN revealed an overall loss of neurons within the motor cortex but no change in neuronal density. Examination of intrinsic and synaptic properties of layer II/III pyramidal neurons revealed no significant difference between sham and rmTBI animals at rest or under convulsant challenge with the potassium channel blocker, 4-Aminophyridine. Overall, our findings indicate that the neuropathological changes reported after pediatric rmTBI can be effectively modeled by repeat weight drop in juvenile animals. Developing a better understanding of how rmTBI alters the pediatric brain may help improve patient care and direct "return to game" decision making in adolescents.
ContributorsGoddeyne, Corey (Author) / Anderson, Trent (Thesis advisor) / Smith, Brian (Committee member) / Kleim, Jeffrey (Committee member) / Arizona State University (Publisher)
Created2014