Matching Items (123)
Filtering by

Clear all filters

149976-Thumbnail Image.png
Description
The majority of chronic myeloid leukemia (CML) and some of acute lymphocytic leukemia (ALL) cases are associated with possessing the BCR-Abl fusion protein from an oncogenic translocation, resulting in a constantly active form of Abl and rapid proliferation. CML and ALL cells that possess the BCR-Abl fusion protein are known

The majority of chronic myeloid leukemia (CML) and some of acute lymphocytic leukemia (ALL) cases are associated with possessing the BCR-Abl fusion protein from an oncogenic translocation, resulting in a constantly active form of Abl and rapid proliferation. CML and ALL cells that possess the BCR-Abl fusion protein are known as Philadelphia chromosome positive (Ph+). Currently, Imatinib (selective Abl inhibitor) is used as therapy against CML and ALL. However, some patients may have malignancies which show resistance to Imatinib. Previous work displays that the transformation of progenitor B cells with the v-Abl oncogene of Abelson murine leukemia virus results in cell cycle progression, rapid proliferation, and potentially malignant transformation while preventing any further differentiation. Progenitor B cells transformed with the temperature-sensitive form of the v-Abl oncogene have served as a model to study cellular response to Imatinib treatment. After some manipulation, very few cells were forced to progress to malignancy, forming tumor in vivo. These cells were no long sensitive to v-Abl inactivation, resembling the Imatinib resistant ALL. Autophagy is the process by which proteins and organelles are broken-down and recycled within the eukaryotic cell and has been hypothesized to play a part in cancer cell survival and drug-resistance. LC3 processing is a widely accepted marker of autophagy induction and progression. It has also been shown that Imatinib treatment of Ph+ leukemia can induce autophagy. In this study, we examined the autophagy induction in response to v-Abl inactivation in a Ph+-B-ALL cell model that shows resistance to Imatinib. In particular, we wonder whether the tumor cell line resistant to v-Abl inactivation may acquire a high level of autophagy to become resistant to apoptosis induced by v-Abl inactivation, and thus become addicted to autophagy. Indeed, this tumor cell line displays a high basal levels of LC3 I and II expression, regardless of v-Abl activity. We further demonstrated that inhibition of the autophagy pathway enhances the tumor line's sensitivity to Imatinib, resulting in cell cycle arrest and massive apoptosis. The combination of autophagy and Abl inhibitions may serve as an effective therapy for BCR-Abl positive CML.
ContributorsArkus, Nohea (Author) / Chang, Yung (Thesis advisor) / Kusumi, Kenro (Committee member) / Lake, Douglas (Committee member) / Jacobs, Bertram (Committee member) / Arizona State University (Publisher)
Created2011
152144-Thumbnail Image.png
Description
Accumulating evidence implicates exposure to adverse childhood experiences in the development of hypocortisolism in the long-term, and researchers are increasingly examining individual-level mechanisms that may underlie, exacerbate or attenuate this relation among at-risk populations. The current study takes a developmentally and theoretically informed approach to examining episodic childhood stressors, inherent

Accumulating evidence implicates exposure to adverse childhood experiences in the development of hypocortisolism in the long-term, and researchers are increasingly examining individual-level mechanisms that may underlie, exacerbate or attenuate this relation among at-risk populations. The current study takes a developmentally and theoretically informed approach to examining episodic childhood stressors, inherent and voluntary self-regulation, and physiological reactivity among a longitudinal sample of youth who experienced parental divorce. Participants were drawn from a larger randomized controlled trial of a preventive intervention for children of divorce between the ages of 9 and 12. The current sample included 159 young adults (mean age = 25.5 years; 53% male; 94% Caucasian) who participated in six waves of data collection, including a 15-year follow-up study. Participants reported on exposure to negative life events (four times over a 9-month period) during childhood, and mothers rated child temperament. Six years later, youth reported on the use of active and avoidant coping strategies, and 15 years later, they participated in a standardized psychosocial stress task and provided salivary cortisol samples prior to and following the task. Path analyses within a structural equation framework revealed that a multiple mediation model best fit the data. It was found that children with better mother-rated self-regulation (i.e. low impulsivity, low negative emotionality, and high attentional focus) exhibited lower total cortisol output 15 years later. In addition, greater self-regulation in childhood predicted greater use of active coping in adolescence, whereas a greater number of negative life events predicted increased use of avoidant coping in adolescence. Finally, a greater number of negative events in childhood predicted marginally lower total cortisol output, and higher levels of active coping in adolescence were associated with greater total cortisol output in young adulthood. Findings suggest that children of divorce who exhibit better self-regulation evidence lower cortisol output during a standardized psychosocial stress task relative to those who have higher impulsivity, lower attentional focus, and/or higher negative emotionality. The conceptual significance of the current findings, including the lack of evidence for hypothesized relations, methodological issues that arose, and issues in need of future research are discussed.
ContributorsHagan, Melissa (Author) / Luecken, Linda (Thesis advisor) / MacKinnon, David (Committee member) / Wolchik, Sharlene (Committee member) / Doane, Leah (Committee member) / Arizona State University (Publisher)
Created2013
152247-Thumbnail Image.png
Description
Surface plasmon resonance (SPR) has emerged as a popular technique for elucidating subtle signals from biological events in a label-free, high throughput environment. The efficacy of conventional SPR sensors, whose signals are mass-sensitive, diminishes rapidly with the size of the observed target molecules. The following work advances the current SPR

Surface plasmon resonance (SPR) has emerged as a popular technique for elucidating subtle signals from biological events in a label-free, high throughput environment. The efficacy of conventional SPR sensors, whose signals are mass-sensitive, diminishes rapidly with the size of the observed target molecules. The following work advances the current SPR sensor paradigm for the purpose of small molecule detection. The detection limits of two orthogonal components of SPR measurement are targeted: speed and sensitivity. In the context of this report, speed refers to the dynamic range of measured kinetic rate constants, while sensitivity refers to the target molecule mass limitation of conventional SPR measurement. A simple device for high-speed microfluidic delivery of liquid samples to a sensor surface is presented to address the temporal limitations of conventional SPR measurement. The time scale of buffer/sample switching is on the order of milliseconds, thereby minimizing the opportunity for sample plug dispersion. The high rates of mass transport to and from the central microfluidic sensing region allow for SPR-based kinetic analysis of binding events with dissociation rate constants (kd) up to 130 s-1. The required sample volume is only 1 μL, allowing for minimal sample consumption during high-speed kinetic binding measurement. Charge-based detection of small molecules is demonstrated by plasmonic-based electrochemical impedance microscopy (P-EIM). The dependence of surface plasmon resonance (SPR) on surface charge density is used to detect small molecules (60-120 Da) printed on a dextran-modified sensor surface. The SPR response to an applied ac potential is a function of the surface charge density. This optical signal is comprised of a dc and an ac component, and is measured with high spatial resolution. The amplitude and phase of local surface impedance is provided by the ac component. The phase signal of the small molecules is a function of their charge status, which is manipulated by the pH of a solution. This technique is used to detect and distinguish small molecules based on their charge status, thereby circumventing the mass limitation (~100 Da) of conventional SPR measurement.
ContributorsMacGriff, Christopher Assiff (Author) / Tao, Nongjian (Thesis advisor) / Wang, Shaopeng (Committee member) / LaBaer, Joshua (Committee member) / Chae, Junseok (Committee member) / Arizona State University (Publisher)
Created2013
152032-Thumbnail Image.png
Description
In order to analyze data from an instrument administered at multiple time points it is a common practice to form composites of the items at each wave and to fit a longitudinal model to the composites. The advantage of using composites of items is that smaller sample sizes are required

In order to analyze data from an instrument administered at multiple time points it is a common practice to form composites of the items at each wave and to fit a longitudinal model to the composites. The advantage of using composites of items is that smaller sample sizes are required in contrast to second order models that include the measurement and the structural relationships among the variables. However, the use of composites assumes that longitudinal measurement invariance holds; that is, it is assumed that that the relationships among the items and the latent variables remain constant over time. Previous studies conducted on latent growth models (LGM) have shown that when longitudinal metric invariance is violated, the parameter estimates are biased and that mistaken conclusions about growth can be made. The purpose of the current study was to examine the impact of non-invariant loadings and non-invariant intercepts on two longitudinal models: the LGM and the autoregressive quasi-simplex model (AR quasi-simplex). A second purpose was to determine if there are conditions in which researchers can reach adequate conclusions about stability and growth even in the presence of violations of invariance. A Monte Carlo simulation study was conducted to achieve the purposes. The method consisted of generating items under a linear curve of factors model (COFM) or under the AR quasi-simplex. Composites of the items were formed at each time point and analyzed with a linear LGM or an AR quasi-simplex model. The results showed that AR quasi-simplex model yielded biased path coefficients only in the conditions with large violations of invariance. The fit of the AR quasi-simplex was not affected by violations of invariance. In general, the growth parameter estimates of the LGM were biased under violations of invariance. Further, in the presence of non-invariant loadings the rejection rates of the hypothesis of linear growth increased as the proportion of non-invariant items and as the magnitude of violations of invariance increased. A discussion of the results and limitations of the study are provided as well as general recommendations.
ContributorsOlivera-Aguilar, Margarita (Author) / Millsap, Roger E. (Thesis advisor) / Levy, Roy (Committee member) / MacKinnon, David (Committee member) / West, Stephen G. (Committee member) / Arizona State University (Publisher)
Created2013
152123-Thumbnail Image.png
Description
This dissertation investigates the condition of skeletal muscle insulin resistance using bioinformatics and computational biology approaches. Drawing from several studies and numerous data sources, I have attempted to uncover molecular mechanisms at multiple levels. From the detailed atomistic simulations of a single protein, to datamining approaches applied at the systems

This dissertation investigates the condition of skeletal muscle insulin resistance using bioinformatics and computational biology approaches. Drawing from several studies and numerous data sources, I have attempted to uncover molecular mechanisms at multiple levels. From the detailed atomistic simulations of a single protein, to datamining approaches applied at the systems biology level, I provide new targets to explore for the research community. Furthermore I present a new online web resource that unifies various bioinformatics databases to enable discovery of relevant features in 3D protein structures.
ContributorsMielke, Clinton (Author) / Mandarino, Lawrence (Committee member) / LaBaer, Joshua (Committee member) / Magee, D. Mitchell (Committee member) / Dinu, Valentin (Committee member) / Willis, Wayne (Committee member) / Arizona State University (Publisher)
Created2013
151359-Thumbnail Image.png
Description
Cancer is one of the most serious global diseases. We have focused on cancer immunoprevention. My thesis projects include developing a prophylactic primary and metastatic cancer vaccines, early cancer detection and investigation of genes involved in tumor development. These studies were focused on frame-shift (FS) antigens. The FS antigens are

Cancer is one of the most serious global diseases. We have focused on cancer immunoprevention. My thesis projects include developing a prophylactic primary and metastatic cancer vaccines, early cancer detection and investigation of genes involved in tumor development. These studies were focused on frame-shift (FS) antigens. The FS antigens are generated by genomic mutations or abnormal RNA processing, which cause a portion of a normal protein to be translated out of frame. The concept of the prophylactic cancer vaccine is to develop a general cancer vaccine that could prevent healthy people from developing different types of cancer. We have discovered a set of cancer specific FS antigens. One of the FS candidates, structural maintenance of chromosomes protein 1A (SMC1A) FS, could start to accumulate at early stages of tumor and be specifically exposed to the immune system by tumor cells. Prophylactic immunization with SMC1A-FS could significantly inhibit primary tumor development in different murine tumor models and also has the potential to inhibit tumor metastasis. The SMC1A-FS transcript was detected in the plasma of the 4T1/BALB/c mouse tumor model. The tumor size was correlated with the transcript ratio of the SMC1A-FS verses the WT in plasma, which could be measured by regular RT-PCR. This unique cancer biomarker has a practical potential for a large population cancer screen, as well as clinical tumor monitoring. With a set of mimotope peptides, antibodies against SMC1A-FS peptide were detected in different cancer patients, including breast cancer, pancreas cancer and lung cancer with a 53.8%, 56.5% and 12.5% positive rate respectively. This suggested that the FS antibody could be a biomarker for early cancer detection. The characterization of SMC1A suggested that: First, the deficiency of the SMC1A is common in different tumors and able to promote tumor initiation and development; second, the FS truncated protein may have nucleolus function in normal cells. Mis-control of this protein may promote tumor development. In summary, we developed a systematic general cancer prevention strategy through the variety immunological and molecular methods. The results gathered suggest the SMC1A-FS may be useful for the detection and prevention of cancer.
ContributorsShen, Luhui (Author) / Johnston, Stephen Albert (Thesis advisor) / Chang, Yung (Committee member) / Miller, Laurence (Committee member) / Sykes, Kathryn (Committee member) / Jacobs, Bertram (Committee member) / Arizona State University (Publisher)
Created2012
150493-Thumbnail Image.png
Description
Research shows that general parenting practices (e.g., support and discipline), influence adolescent substance use. However, socialization theory suggests that parental socialization occurs not only through general parenting practices, but also through parents' attempts to influence specific behaviors and values. A growing literature supports links between substance-specific parenting and adolescent substance

Research shows that general parenting practices (e.g., support and discipline), influence adolescent substance use. However, socialization theory suggests that parental socialization occurs not only through general parenting practices, but also through parents' attempts to influence specific behaviors and values. A growing literature supports links between substance-specific parenting and adolescent substance use. For adolescent alcohol use, there are considerable limitations and gaps within this literature. To address these limitations, the present study examined the factor structure of alcohol-specific parenting, investigated the determinants of alcohol-specific parenting, and explored its association with nondrinking adolescents' attitudes about alcohol use. Using a high-risk sample of nondrinking adolescents and their parents, the current study found three dimensions of alcohol-specific parenting using both adolescent and parent reports, but also found evidence of non-invariance across reporters. Results also revealed complex roles of parental alcohol use disorder (AUD; including recovered and current AUD), family history of AUD, and current drinking as determinants of the three dimensions of anti-alcohol parenting behaviors. Moreover, the current study showed that the effects of these determinants varied by the reporter of the parenting behavior. Finally, the current study found the dimensions of alcohol-specific parenting to be unique and significant predictors of nondrinking adolescents' attitudes about alcohol, over and above general parenting practices, parent AUD, and parent current drinking. Given its demonstrated distinctness from general parenting practices, its link with adolescent alcohol attitudes, and its potential malleability, alcohol-specific parenting may be an important complement to interventions targeting parents of adolescents.
ContributorsHandley, Elizabeth D (Author) / Chassin, Laurie (Thesis advisor) / MacKinnon, David (Committee member) / Crnic, Keith (Committee member) / Sandler, Irwin (Committee member) / Arizona State University (Publisher)
Created2012
150705-Thumbnail Image.png
Description
Recombinant protein expression is essential to biotechnology and molecular medicine, but facile methods for obtaining significant quantities of folded and functional protein in mammalian cell culture have been lacking. Here I describe a novel 37-nucleotide in vitro selected sequence that promotes unusually high transgene expression in a vaccinia driven cytoplasmic

Recombinant protein expression is essential to biotechnology and molecular medicine, but facile methods for obtaining significant quantities of folded and functional protein in mammalian cell culture have been lacking. Here I describe a novel 37-nucleotide in vitro selected sequence that promotes unusually high transgene expression in a vaccinia driven cytoplasmic expression system. Vectors carrying this sequence in a monocistronic reporter plasmid produce >1,000-fold more protein than equivalent vectors with conventional vaccinia promoters. Initial mechanistic studies indicate that high protein expression results from dual activity that impacts both transcription and translation. I suggest that this motif represents a powerful new tool in vaccinia-based protein expression and vaccine development technology.
ContributorsFlores, Julia Anne (Author) / Chaput, John C (Thesis advisor) / Jacobs, Bertram (Committee member) / LaBaer, Joshua (Committee member) / Arizona State University (Publisher)
Created2012
135905-Thumbnail Image.png
Description
This study was conducted to observe the effects of vitamin C supplementation upon the expression of sICAM-1 in asthmatic subject. Two groups were created, each with a sample size of 4 subjects. One group was the vitamin C group (VC) and the other was the placebo group (PL). The study

This study was conducted to observe the effects of vitamin C supplementation upon the expression of sICAM-1 in asthmatic subject. Two groups were created, each with a sample size of 4 subjects. One group was the vitamin C group (VC) and the other was the placebo group (PL). The study was analyzed through observing concentrations of biomolecules present within samples of blood plasma and nasal lavages. These included vitamin C, sICAM-1 expression, and histamine. The following P-values calculated from the data collected from this study. The plasma vitamin C screening was p=0.3, and after 18 days of supplementation, p=0.03. For Nasal ICAM p=0.5 at Day 0, p=0.4 at Day 4, and p=0.9 at Day 18. For the Histamine samples p=0.9 at Day 0 and p=0.9 at Day 18. The following P-values calculated from the data collected from both studies. The plasma vitamin C screening was p=0.8, and after 18 days of supplementation, p=0.03. The change of vitamin C at the end of this study and the combined data both had a P-value that was calculated to be lower than 0.05, which meant that this change was significant because it was due to the intervention and not chance. For Nasal ICAM samples p=0.7 at Day 0, p=0.7 at Day 4, and p=1 at Day 18. For the Histamine p=0.7 at Day 0 and p=0.9 at Day 18. This study carries various implications although the study data was unable to show much significance. This was the second study to test this, and as more research is done, and the sample size grows, one will be able to observe whether this really is the mechanism through which vitamin C plays a role in immunological functions.
ContributorsKapadia, Chirag Vinay (Author) / Johnston, Carol (Thesis director) / LaBaer, Joshua (Committee member) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2015-12
135663-Thumbnail Image.png
Description
Vaccinia virus (VV) is a prototype virus of the Orthopox viruses. The large dsDNA virus composed of 200kbp genome contains approximately 200 genes and replicates entirely in the cytosol. Since its use as a live vaccine against smallpox that leads to the successful eradication of smallpox, Vaccinia has been intensely

Vaccinia virus (VV) is a prototype virus of the Orthopox viruses. The large dsDNA virus composed of 200kbp genome contains approximately 200 genes and replicates entirely in the cytosol. Since its use as a live vaccine against smallpox that leads to the successful eradication of smallpox, Vaccinia has been intensely studied as a vaccine vector since the large genome allows for the insertion of multiple genes. It is also studied as a molecular tool for gene therapy and gene functional study. Despite its success as a live vaccine, the vaccination causes some mild to serious bur rare adverse events in vaccinees such as generalized Vaccinia and encepharitis. Therefore, identification of virulence genes and removal of these genes to create a safer vaccine remain an important tasks. In this study, the author seeks to elucidate the possible relationship between immune evading proteins E3 and B19. VV did not allow double deletions of E3 and B19, indicating the existence of a relationship between the two genes.
ContributorsBarclay, Shizuka (Author) / Jacobs, Bertram (Thesis director) / Ugarova, Tatiana (Committee member) / Kibler, Karen (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05