Matching Items (75)
Filtering by

Clear all filters

156665-Thumbnail Image.png
Description
This dissertation research studies long-term spatio-temporal patterns of surface urban heat island (SUHI) intensity, urban evapotranspiration (ET), and urban outdoor water use (OWU) using Phoenix metropolitan area (PMA), Arizona as the case study. This dissertation is composed of three chapters. The first chapter evaluates the SUHI intensity for PMA using

This dissertation research studies long-term spatio-temporal patterns of surface urban heat island (SUHI) intensity, urban evapotranspiration (ET), and urban outdoor water use (OWU) using Phoenix metropolitan area (PMA), Arizona as the case study. This dissertation is composed of three chapters. The first chapter evaluates the SUHI intensity for PMA using Moderate Resolution Imaging Spectroradiometer (MODIS) land surface temperature (LST) product and a time-series trend analysis to discover areas that experienced significant changes of SUHI intensity between 2000 and 2017. The heating and cooling effects of different urban land use land cover (LULC) types was also examined using classified Landsat satellite images. The second chapter is focused on urban ET and the impacts of urban LULC change on ET. An empirical model of urban ET for PMA was built using flux tower data and MODIS land products using multivariate regression analysis. A time-series trend analysis was then performed to discover areas in PMA that experienced significant changes of ET between 2001 and 2015. The impact of urban LULC change on ET was examined using classified LULC maps. The third chapter models urban OWU in PMA using a surface energy balance model named METRIC (Mapping Evapotranspiration at high spatial Resolution with Internalized Calibration) and time-series Landsat Thematic Mapper 5 imagery for 2010. The relationship between urban LULC types and OWU was examined with the use of very high-resolution land cover classification data generated from the National Agriculture Imagery Program (NAIP) imagery and regression analysis. Socio-demographic variables were selected from census data at the census track level and analyzed against OWU to study their relationship using correlation analysis. This dissertation makes significant contributions and expands the knowledge of long-term urban climate dynamics for PMA and the influence of urban expansion and LULC change on regional climate. Research findings and results can be used to provide constructive suggestions to urban planners, decision-makers, and city managers to formulate new policies and regulations when planning new constructions for the purpose of sustainable development for a desert city.
ContributorsWang, Chuyuan (Author) / Myint, Soe W. (Thesis advisor) / Brazel, Anthony J. (Committee member) / Wang, Zhihua (Committee member) / Hondula, David M. (Committee member) / Arizona State University (Publisher)
Created2018
156515-Thumbnail Image.png
Description
The fundamental photophysics of fluorescent probes must be understood when the probes are used in biological applications. The photophysics of BODIPY dyes inside polymeric micelles and rhodamine dyes covalently linked to proteins were studied. Hydrophobic boron-dipyrromethene (BODIPY) dyes were noncovalently encapsulated inside polymeric micelles. Absorbance and fluorescence measurements were employed

The fundamental photophysics of fluorescent probes must be understood when the probes are used in biological applications. The photophysics of BODIPY dyes inside polymeric micelles and rhodamine dyes covalently linked to proteins were studied. Hydrophobic boron-dipyrromethene (BODIPY) dyes were noncovalently encapsulated inside polymeric micelles. Absorbance and fluorescence measurements were employed to study the photophysics of these BODIPY dyes in the micellar environments. Amphiphilic polymers with a hydrophobic character and low Critical Micelle Concentration (CMC) protected BODIPYS from the aqueous environment. Moderate dye loading conditions did not result in ground-state dimerization, and only fluorescence lifetimes and brightnesses were affected. However, amphiphilic polymers with a hydrophilic character and high CMC did not protect the BODIPYS from the aqueous environment with concomitant ground-state dimerization and quenching of the fluorescence intensity, lifetime, and brightnesses even at low dye loading conditions. At the doubly-labeled interfaces of Escherichia coli (E. coli) DNA processivity β clamps, the interchromophric interactions of four rhodamine dyes were studied: tetramethylrhodamine (TMR), TMR C6, Alexa Fluor 488, and Alexa Fluor 546. Absorbance and fluorescence measurements were performed on doubly-labeled β clamps with singly-labeled β clamps and free dyes as controls. The absorbance measurements revealed that both TMR and TMR C6 readily formed H-dimers (static quenching) at the doubly-labeled interfaces of the β clamps. However, the TMR with a longer linker (TMR C6) also displayed a degree of dynamic quenching. For Alexa Fluor 546 and Alexa Fluor 488, there were no clear signs of dimerization in the absorbance scans. However, the fluorescence properties (fluorescence intensity, lifetime, and anisotropy) of the Alexa Fluor dyes significantly changed when three methodologies were employed to disrupt the doubly-labeled interfaces: 1) the addition of sodium dodecyl sulfate (SDS) detergent to denature the proteins, 2) the addition of clamp loader (γ complex) to open one of the two interfaces, and 3) the use of subunit exchange to decrease the number of dyes per interface. These fluorescence measurements indicated that for the Alexa Fluor dyes, other interchromophoric interactions were present such as dynamic quenching and homo-Förster Resonance Energy Transfer (homo-FRET).
ContributorsDonaphon, Bryan Matthew (Author) / Levitus, Marcia (Thesis advisor) / Van Horn, Wade (Committee member) / Woodbury, Neal (Committee member) / Arizona State University (Publisher)
Created2018
157213-Thumbnail Image.png
Description
The highly predictable structural and thermodynamic behavior of deoxynucleic acid (DNA) and ribonucleic acid (RNA) have made them versatile tools for creating artificial nanostructures over broad range. Moreover, DNA and RNA are able to interact with biological ligand as either synthetic aptamers or natural components, conferring direct biological functions to

The highly predictable structural and thermodynamic behavior of deoxynucleic acid (DNA) and ribonucleic acid (RNA) have made them versatile tools for creating artificial nanostructures over broad range. Moreover, DNA and RNA are able to interact with biological ligand as either synthetic aptamers or natural components, conferring direct biological functions to the nucleic acid devices. The applications of nucleic acids greatly relies on the bio-reactivity and specificity when applied to highly complexed biological systems.

This dissertation aims to 1) develop new strategy to identify high affinity nucleic acid aptamers against biological ligand; and 2) explore highly orthogonal RNA riboregulators in vivo for constructing multi-input gene circuits with NOT logic. With the aid of a DNA nanoscaffold, pairs of hetero-bivalent aptamers for human alpha thrombin were identified with ultra-high binding affinity in femtomolar range with displaying potent biological modulations for the enzyme activity. The newly identified bivalent aptamers enriched the aptamer tool box for future therapeutic applications in hemostasis, and also the strategy can be potentially developed for other target molecules. Secondly, by employing a three-way junction structure in the riboregulator structure through de-novo design, we identified a family of high-performance RNA-sensing translational repressors that down-regulates gene translation in response to cognate RNAs with remarkable dynamic range and orthogonality. Harnessing the 3WJ repressors as modular parts, we integrate them into biological circuits that execute universal NAND and NOR logic with up to four independent RNA inputs in Escherichia coli.
ContributorsZhou, Yu (Ph.D.) (Author) / Yan, Hao (Thesis advisor) / Green, Alexander (Thesis advisor) / Woodbury, Neal (Committee member) / Ros, Alexandra (Committee member) / Arizona State University (Publisher)
Created2019
157538-Thumbnail Image.png
Description

Many coastal cities around the world are becoming increasingly vulnerable to natural disasters, particularly flooding driven by tropical storm and hurricane storm surge – typically the most destructive feature of these storms, generating significant economic damage and loss of life. This increase in vulnerability is driven by the interactions between

Many coastal cities around the world are becoming increasingly vulnerable to natural disasters, particularly flooding driven by tropical storm and hurricane storm surge – typically the most destructive feature of these storms, generating significant economic damage and loss of life. This increase in vulnerability is driven by the interactions between a wide number of complex social and climatic factors, including population growth, irresponsible urban development, a decrease in essential service provision, sea level rise, and changing storm regimes. These issues are exacerbated by the short-term strategic planning that dominates political action and economic decision-making, resulting in many vulnerable coastal communities being particularly unprepared for large, infrequent storm surge events. This lack of preparedness manifests in several ways, but one of the most visible is the lack of comprehensive evacuation and rescue operation plans for use after major storm surge flooding occurs. Typical evacuation or rescue plans are built using a model of a region’s intact road network. While useful for pre-disaster purposes, the immediate aftermath of large floods sees enormous swaths of a given region’s road system flooded, rendering most of these plans largely useless. Post-storm evacuation and rescue requires large amounts of atypical travel through a region (i.e., across non-road surfaces). Traditional road network models (such as those that are used to generate evacuation routes) are unable to conceptualize this type of transportation, and so are of limited utility during post-disaster scenarios. To solve these problems, this dissertation introduces an alternative network conceptualization that preserves important on-network information but also accounts for the possibility of off-network travel during a disaster. Providing this in situ context is necessary to adequately model transportation through a post-storm landscape, one in which evacuees and rescuers are regularly departing from roads and one in which many roads are completely interdicted by flooding. This modeling approach is used to automatically generate routes through a flooded coastal urban area, as well as to identify potentially critical road segments in advance of an actual storm. These tools may help both emergency managers better prepare for large storms, and urban planners in their efforts to mitigate flood damage.

ContributorsHelderop, Edward (Author) / Grubesic, Tony H. (Thesis advisor) / Kuby, Mike (Committee member) / Hondula, David M. (Committee member) / Arizona State University (Publisher)
Created2019
157609-Thumbnail Image.png
Description

Environmental heat is a growing concern in cities as a consequence of rapid urbanization and climate change, threatening human health and urban vitality. The transportation system is naturally embedded in the issue of urban heat and human heat exposure. Research has established how heat poses a threat to urban inhabitants

Environmental heat is a growing concern in cities as a consequence of rapid urbanization and climate change, threatening human health and urban vitality. The transportation system is naturally embedded in the issue of urban heat and human heat exposure. Research has established how heat poses a threat to urban inhabitants and how urban infrastructure design can lead to increased urban heat. Yet there are gaps in understanding how urban communities accumulate heat exposure, and how significantly the urban transportation system influences or exacerbates the many issues of urban heat. This dissertation focuses on advancing the understanding of how modern urban transportation influences urban heat and human heat exposure through three research objectives: 1) Investigate how human activity results in different outdoor heat exposure; 2) Quantify the growth and extent of urban parking infrastructure; and 3) Model and analyze how pavements and vehicles contribute to urban heat.

In the urban US, traveling outdoors (e.g. biking or walking) is the most frequent activity to cause heat exposure during hot periods. However, outdoor travel durations are often very short, and other longer activities such as outdoor housework and recreation contribute more to cumulative urban heat exposure. In Phoenix, parking and roadway pavement infrastructure contributes significantly to the urban heat balance, especially during summer afternoons, and vehicles only contribute significantly in local areas with high density rush hour vehicle travel. Future development of urban areas (especially those with concerns of extreme heat) should focus on ensuring access and mobility for its inhabitants without sacrificing thermal comfort. This may require urban redesign of transportation systems to be less auto-centric, but without clear pathways to mitigating impacts of urban heat, it may be difficult to promote transitions to travel modes that inherently necessitate heat exposure. Transportation planners and engineers need to be cognizant of the pathways to increased urban heat and human heat exposure when planning and designing urban transportation systems.

ContributorsHoehne, Christopher Glenn (Author) / Chester, Mikhail V (Thesis advisor) / Hondula, David M. (Committee member) / Sailor, David (Committee member) / Pendyala, Ram M. (Committee member) / Arizona State University (Publisher)
Created2019
157051-Thumbnail Image.png
Description

This study investigated the effect of environmental heat stress on physiological and performance measures during a ~4 mi time trial (TT) mountain hike in the Phoenix metropolitan area. Participants (n = 12; 7M/5F; age 21.6 ± 2.47 [SD]) climbed ‘A’ mountain (~1 mi) four times on a hot day (HOT;

This study investigated the effect of environmental heat stress on physiological and performance measures during a ~4 mi time trial (TT) mountain hike in the Phoenix metropolitan area. Participants (n = 12; 7M/5F; age 21.6 ± 2.47 [SD]) climbed ‘A’ mountain (~1 mi) four times on a hot day (HOT; wet bulb globe temperature [WBGT] = 31.6°C) and again on a moderate day (MOD; WBGT = 19.0°C). Physiological and performance measures were made before and throughout the course of each hike. Mean pre-hike hydration status (urine specific gravity [USG]) indicated that participants began both HOT and MOD trials in a euhydrated state (1.016 ± 0.010 and 1.010 ± 0.008, respectively) and means did not differ significantly between trials (p = .085). Time trial performance was impaired by -11% (11.1 minutes) in the HOT trial (105 ± 21.7 min), compared to MOD (93.9 ± 13.1 min) (p = .013). Peak core temperatures were significantly higher in HOT (38.5 ± 0.36°C) versus MOD (38.0 ± 0.30°C) with progressively increasing differences between trials over time (p < .001). Peak ratings of perceived exertion were significantly higher in HOT (14.2 ± 2.38) compared to MOD (11.9 ± 2.02) (p = .007). Relative intensity (percent of age-predicted maximal heart rate [HR]), estimated absolute intensity (metabolic equivalents [METs]), and estimated energy expenditure (MET-h) were all increased in HOT, but not significantly so. The HOT condition reduced predicted maximal aerobic capacity (CRFp) by 6% (p = .026). Sweat rates differed significantly between HOT (1.38 ± 0.53 L/h) and MOD (0.84 ± 0.27 L/h) (p = .01). Percent body mass loss (PBML) did not differ significantly between HOT (1.06 ± 0.95%) and MOD (0.98 ± 0.84%) (p = .869). All repeated measures variables showed significant between-subjects effects (p < .05), indicating individual differences in response to test conditions. Heat stress was shown to negatively affect physiological and performance measures in recreational mountain hikers. However, considerable variation exists between individuals, and the degree of physiological and performance impairment is probably due, in part, to differences in aerobic fitness and acclimatization status rather than pre- or during-performance hydration status.

ContributorsLinsell, Joshua (Author) / Wardenaar, Floris (Thesis advisor) / Berger, Christopher (Committee member) / Forzani, Erica (Committee member) / Hondula, David M. (Committee member) / Arizona State University (Publisher)
Created2019
154189-Thumbnail Image.png
Description
Humanity’s demand for energy is increasing exponentially and the dependence on fossil fuels is both unsustainable and detrimental to the environment. To provide a solution to the impending energy crisis, it is reasonable to look toward utilizing solar energy, which is abundant and renewable. One approach to harvesting solar irradiation

Humanity’s demand for energy is increasing exponentially and the dependence on fossil fuels is both unsustainable and detrimental to the environment. To provide a solution to the impending energy crisis, it is reasonable to look toward utilizing solar energy, which is abundant and renewable. One approach to harvesting solar irradiation for fuel purposes is through mimicking the processes of natural photosynthesis in an artificial design to use sunlight and water to store energy in chemical bonds for later use. Thus, in order to design an efficient energy conversion device, the underlying processes of the natural system must be understood. An artificial photosynthetic device has many components and each can be optimized separately. This work deals with the design, construction and study of some of those components. The first chapter provides an introduction to this work. The second chapter shows a proof of concept for a water splitting dye sensitized photoelectrochemical cell followed by the presentation of a new p-type semiconductor, the design of a modular cluster binding protein that can be used for incorporating catalysts, and a new anchoring group for semiconducting oxides with high electron injection efficiency. The third chapter investigates the role of electronic coupling and thermodynamics for photoprotection in artificial systems by triplet-triplet energy transfer from tetrapyrroles to carotenoids. The fourth chapter describes a mimic of the proton-coupled electron transfer in photosystem II and confirms that in the artificial system a concerted mechanism operates. In the fifth chapter, a microbial system is designed to work in tandem with a photovoltaic device to produce high energy fuels. A variety of quinone redox mediators have been synthesized to shuttle electrons from an electron donor to the microbial system. Lastly, the synthesis of a variety of photosensitizers is detailed for possible future use in artificial systems. The results of this work helps with the understanding of the processes of natural photosynthesis and suggests ways to design artificial photosynthetic devices that can contribute to solving the renewable energy challenge.
ContributorsBrown, Chelsea L (Author) / Moore, Ana L (Thesis advisor) / Gust, Devens (Committee member) / Woodbury, Neal (Committee member) / Arizona State University (Publisher)
Created2015
154557-Thumbnail Image.png
Description
The manipulation of biological targets using synthetic compounds has been the focal point of medicinal chemistry. The work described herein centers on the synthesis of organic small molecules that act either as probes for studying protein conformational changes or DNA–protein interaction, or as multifunctional radical quenchers.

Fluorescent labeling is of paramount

The manipulation of biological targets using synthetic compounds has been the focal point of medicinal chemistry. The work described herein centers on the synthesis of organic small molecules that act either as probes for studying protein conformational changes or DNA–protein interaction, or as multifunctional radical quenchers.

Fluorescent labeling is of paramount importance to biological studies of proteins. For the development of new extrinsic small fluorophores, a series of tryptophan analogues has been designed and synthesized. Their pdCpA derivatives have been synthesized for tRNA activation and in vitro protein synthesis. The photophysical properties of the tryptophan (Trp) analogues have been examined, some of which can be selectively monitored even in the presence of multiple native tryptophan residues. Further, some of the Trp analogues form efficient FRET pairs with acceptors such as acridon-2-ylalanine (Acd) or L-(7-hydroxycoumarin-4-yl)ethylglycine (HCO) for the selective study of conformational changes in proteins.

Molecules which can bind with high sequence selectivity to a chosen target in a gene sequence are of interest for the development of gene therapy, diagnostic devices for genetic analysis, and as molecular tools for nucleic acid manipulations. Stereoselective synthesis of different alanyl nucleobase amino acids is described. Their pdCpA derivatives have been synthesized for tRNA activation and site-specific incorporation into the DNA-binding protein RRM1 of hnRNP LL. It is proposed that the nucleobase moieties in the protein may specifically recognize base sequence in the i-motif DNA through H-bonding and base-stacking interactions.

The mitochondrial respiratory chain accumulates more oxidative damage than any other organelle within the cell. Dysfunction of this organelle is believed to drive the progression of many diseases, thus mitochondria are an important potential drug target. Reactive oxygen species (ROS) are generated when electrons from the respiratory chain escape and interact with oxygen. ROS can react with proteins, lipids or DNA causing cell death. For the development of effective neuroprotective drugs, a series of N-hydroxy-4-pyridones have been designed and synthesized as CoQ10 analogues. All the analogues synthesized were evaluated for their ability to quench lipid peroxidation and reactive oxygen species (ROS).
ContributorsTalukder, Poulami (Author) / Hecht, Sidney M. (Thesis advisor) / Woodbury, Neal (Committee member) / Gould, Ian (Committee member) / Arizona State University (Publisher)
Created2016
154991-Thumbnail Image.png
Description
Sunlight, the most abundant source of energy available, is diffuse and intermittent; therefore it needs to be stored in chemicals bonds in order to be used any time. Photosynthesis converts sunlight into useful chemical energy that organisms can use for their functions. Artificial photosynthesis aims to use the essential chemistry

Sunlight, the most abundant source of energy available, is diffuse and intermittent; therefore it needs to be stored in chemicals bonds in order to be used any time. Photosynthesis converts sunlight into useful chemical energy that organisms can use for their functions. Artificial photosynthesis aims to use the essential chemistry of natural photosynthesis to harvest solar energy and convert it into fuels such as hydrogen gas. By splitting water, tandem photoelectrochemical solar cells (PESC) can produce hydrogen gas, which can be stored and used as fuel. Understanding the mechanisms of photosynthesis, such as photoinduced electron transfer, proton-coupled electron transfer (PCET) and energy transfer (singlet-singlet and triplet-triplet) can provide a detailed knowledge of those processes which can later be applied to the design of artificial photosynthetic systems. This dissertation has three main research projects. The first part focuses on design, synthesis and characterization of suitable photosensitizers for tandem cells. Different factors that can influence the performance of the photosensitizers in PESC and the attachment and use of a biomimetic electron relay to a water oxidation catalyst are explored. The second part studies PCET, using Nuclear Magnetic Resonance and computational chemistry to elucidate the structure and stability of tautomers that comprise biomimetic electron relays, focusing on the formation of intramolecular hydrogen bonds. The third part of this dissertation uses computational calculations to understand triplet-triplet energy transfer and the mechanism of quenching of the excited singlet state of phthalocyanines in antenna models by covalently attached carotenoids.
ContributorsTejeda Ferrari, Marely (Author) / Moore, Ana (Thesis advisor) / Mujica, Vladimiro (Thesis advisor) / Gust, John (Committee member) / Woodbury, Neal (Committee member) / Arizona State University (Publisher)
Created2016
153110-Thumbnail Image.png
Description
The healthcare system in this country is currently unacceptable. New technologies may contribute to reducing cost and improving outcomes. Early diagnosis and treatment represents the least risky option for addressing this issue. Such a technology needs to be inexpensive, highly sensitive, highly specific, and amenable to adoption in a clinic.

The healthcare system in this country is currently unacceptable. New technologies may contribute to reducing cost and improving outcomes. Early diagnosis and treatment represents the least risky option for addressing this issue. Such a technology needs to be inexpensive, highly sensitive, highly specific, and amenable to adoption in a clinic. This thesis explores an immunodiagnostic technology based on highly scalable, non-natural sequence peptide microarrays designed to profile the humoral immune response and address the healthcare problem. The primary aim of this thesis is to explore the ability of these arrays to map continuous (linear) epitopes. I discovered that using a technique termed subsequence analysis where epitopes could be decisively mapped to an eliciting protein with high success rate. This led to the discovery of novel linear epitopes from Plasmodium falciparum (Malaria) and Treponema palladium (Syphilis), as well as validation of previously discovered epitopes in Dengue and monoclonal antibodies. Next, I developed and tested a classification scheme based on Support Vector Machines for development of a Dengue Fever diagnostic, achieving higher sensitivity and specificity than current FDA approved techniques. The software underlying this method is available for download under the BSD license. Following this, I developed a kinetic model for immunosignatures and tested it against existing data driven by previously unexplained phenomena. This model provides a framework and informs ways to optimize the platform for maximum stability and efficiency. I also explored the role of sequence composition in explaining an immunosignature binding profile, determining a strong role for charged residues that seems to have some predictive ability for disease. Finally, I developed a database, software and indexing strategy based on Apache Lucene for searching motif patterns (regular expressions) in large biological databases. These projects as a whole have advanced knowledge of how to approach high throughput immunodiagnostics and provide an example of how technology can be fused with biology in order to affect scientific and health outcomes.
ContributorsRicher, Joshua Amos (Author) / Johnston, Stephen A. (Thesis advisor) / Woodbury, Neal (Committee member) / Stafford, Phillip (Committee member) / Papandreou-Suppappola, Antonia (Committee member) / Arizona State University (Publisher)
Created2014