Matching Items (85)
Filtering by

Clear all filters

137083-Thumbnail Image.png
Description
A coincidence reporter construct, consisting of the p21-promoter and two luciferase genes (Firefly and Renilla), was constructed for the screening of drugs that might inhibit Olig2's tumorigenic role in glioblastoma. The reporter construct was tested using an Olig2 inhibitor, HSP990, as well as short hairpin RNA targeting Olig2. Further confirmatory

A coincidence reporter construct, consisting of the p21-promoter and two luciferase genes (Firefly and Renilla), was constructed for the screening of drugs that might inhibit Olig2's tumorigenic role in glioblastoma. The reporter construct was tested using an Olig2 inhibitor, HSP990, as well as short hairpin RNA targeting Olig2. Further confirmatory analysis is needed before the reporter cell line is ready for high-throughput screening at the NIH and lead compound selection.
ContributorsCusimano, Joseph Michael (Author) / LaBaer, Joshua (Thesis director) / Mangone, Marco (Committee member) / Mehta, Shwetal (Committee member) / Barrett, The Honors College (Contributor) / Department of Chemistry and Biochemistry (Contributor)
Created2014-05
137766-Thumbnail Image.png
Description
Background: Breast cancer is the most frequently diagnosed cancer and the leading cause of cancer deaths in females worldwide, accounting for 23% of all new cancer cases and 14% of all total cancer deaths in 2008. Five tumor-normal pairs of primary breast epithelial cells were treated for infinite proliferation by

Background: Breast cancer is the most frequently diagnosed cancer and the leading cause of cancer deaths in females worldwide, accounting for 23% of all new cancer cases and 14% of all total cancer deaths in 2008. Five tumor-normal pairs of primary breast epithelial cells were treated for infinite proliferation by using a ROCK inhibitor and mouse feeder cells. Methods: Raw paired-end, 100x coverage RNA-Seq data was aligned to the Human Reference Genome Version 19 using BWA and Tophat. Gene differential expression analysis was completed using Cufflinks and Cuffdiff. Interactive Genome Viewer was used for data visualization. Results: 15 genes were found to be down-regulated by at least one log-fold change in 4/5 of tumor samples. 75 genes were found to be down-regulated in 3/5 of our tumor samples by at least one log-fold change. 11 genes were found to be up-regulated in 4/5 of our tumor samples, and 68 genes were identified to be up-regulated in 3/5 of the tumor samples by at least one-fold change. Conclusion: Expression changes in genes such as AZGP1, AGER, ALG11, and S1007 suggest a disruption in the glycosylation pathway. No correlation was found between Cufflink's Her2 gene-expression and DAKO score classification.
ContributorsHernandez, Fernando (Author) / Anderson, Karen (Thesis director) / Mangone, Marco (Committee member) / Park, Jin (Committee member) / Barrett, The Honors College (Contributor) / Department of Information Systems (Contributor)
Created2013-05
137344-Thumbnail Image.png
Description
miRNAs are short non-coding regulatory RNAs that have an important roles in a wide range of biological processes. Dysfunction of miRNA regulation has also been shown to occur in diseases such as cancer. Despite the widespread influence of miRNAs in these contexts, the vast majority of miRNA targets are poorly

miRNAs are short non-coding regulatory RNAs that have an important roles in a wide range of biological processes. Dysfunction of miRNA regulation has also been shown to occur in diseases such as cancer. Despite the widespread influence of miRNAs in these contexts, the vast majority of miRNA targets are poorly characterized. The aim of this research project was to gain a better understating of miRNA targeting by using the model organism C. elegans. In order to do this I adapted a novel high-throughput assay to detect miRNA targets for use with the C. elegans 3`UTRome. As a proof of principle I performed this assay on 96 C. elegans 3`UTRs using high-throughput techniques. The results revealed miRNA interactions with two predicted 3`UTR targets for the miRNA lin-4 and ten unpredicted targets. The results also corroborated previous findings that certain worm miRNAs require special modifications to be expressed in human cells.
ContributorsKotagama, Kasuen Indrajith Bandara (Author) / Mangone, Marco (Thesis director) / Anderson, Karen (Committee member) / Barrett, The Honors College (Contributor) / Department of Chemistry and Biochemistry (Contributor)
Created2013-12
137400-Thumbnail Image.png
Description
DNA methylation, a subset of epigenetics, has been found to be a significant marker associated with variations in gene expression and activity across the entire human genome. As of now, however, there is little to no information about how DNA methylation varies between different tissues inside a singular person's body.

DNA methylation, a subset of epigenetics, has been found to be a significant marker associated with variations in gene expression and activity across the entire human genome. As of now, however, there is little to no information about how DNA methylation varies between different tissues inside a singular person's body. By using research data from a preliminary study of lean and obese clinical subjects, this study attempts to put together a profile of the differences in DNA methylation that can be observed between two particular body tissues from this subject group: blood and skeletal muscle. This study allows us to start describing the changes that occur at the epigenetic level that influence how differently these two tissues operate, along with seeing how these tissues change between individuals of different weight classes, especially in the context of the development of symptoms of Type 2 Diabetes.
ContributorsRappazzo, Micah Gabriel (Author) / Coletta, Dawn (Thesis director) / Katsanos, Christos (Committee member) / Dinu, Valentin (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor) / Department of Psychology (Contributor)
Created2013-12
136626-Thumbnail Image.png
Description
Alternative polyadenylation (APA) is the biological mechanism in which the same gene can have multiple 3'untranslated region (3'UTR) isoforms due to the presence of multiple polyadenylation signal (PAS) elements within the pre mRNAs. Because APA produces mRNA transcripts that have different 3'UTR isoforms, certain transcripts may be subject to post-transcriptional

Alternative polyadenylation (APA) is the biological mechanism in which the same gene can have multiple 3'untranslated region (3'UTR) isoforms due to the presence of multiple polyadenylation signal (PAS) elements within the pre mRNAs. Because APA produces mRNA transcripts that have different 3'UTR isoforms, certain transcripts may be subject to post-transcriptional regulation by regulatory non-coding RNAs, such as microRNAs or RNA binding proteins defects of which have been implicated in diseases such as cancer. Despite the increasing level of information, functional understanding of the molecular mechanisms involved in transcription is still poorly understood, nor is it clear why APA is necessary at a cell or tissue-specific level. To address these questions I wanted to develop a set of sensor strain plasmids capable of detecting cleavage and polyadenylation in vivo, inject the complete sensor strain plasmid into C. elegans and prepare stable transgenic lines, and perform proof-of-principle RNAi feeding experiments targeting genes associated with the cleavage and polyadenylation complex machinery. I demonstrated that it was possible to create a plasmid capable of detecting cleavage and polyadenylation in C. elegans; however, issues arose during the RNAi assays indicating the sensor strain plasmid was not sensitive enough to the RNAi to effectively detect in the worms. Once the problems involved with sensitivity and variability in the RNAi effects are resolved, the plasmid would be able to better address questions regarding the functional understanding of molecular mechanisms involved in transcription termination.
ContributorsWilky, Henry Patrick (Author) / Mangone, Marco (Thesis director) / Newbern, Jason (Committee member) / Blazie, Stephen (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2015-05
141463-Thumbnail Image.png
Description

Five immunocompetent C57BL/6-cBrd/cBrd/Cr (albino C57BL/6) mice were injected with GL261-luc2 cells, a cell line sharing characteristics of human glioblastoma multiforme (GBM). The mice were imaged using magnetic resonance (MR) at five separate time points to characterize growth and development of the tumor. After 25 days, the final tumor volumes of

Five immunocompetent C57BL/6-cBrd/cBrd/Cr (albino C57BL/6) mice were injected with GL261-luc2 cells, a cell line sharing characteristics of human glioblastoma multiforme (GBM). The mice were imaged using magnetic resonance (MR) at five separate time points to characterize growth and development of the tumor. After 25 days, the final tumor volumes of the mice varied from 12 mm3 to 62 mm3, even though mice were inoculated from the same tumor cell line under carefully controlled conditions. We generated hypotheses to explore large variances in final tumor size and tested them with our simple reaction-diffusion model in both a 3-dimensional (3D) finite difference method and a 2-dimensional (2D) level set method. The parameters obtained from a best-fit procedure, designed to yield simulated tumors as close as possible to the observed ones, vary by an order of magnitude between the three mice analyzed in detail. These differences may reflect morphological and biological variability in tumor growth, as well as errors in the mathematical model, perhaps from an oversimplification of the tumor dynamics or nonidentifiability of parameters. Our results generate parameters that match other experimental in vitro and in vivo measurements. Additionally, we calculate wave speed, which matches with other rat and human measurements.

ContributorsRutter, Erica (Author) / Stepien, Tracy (Author) / Anderies, Barrett (Author) / Plasencia, Jonathan (Author) / Woolf, Eric C. (Author) / Scheck, Adrienne C. (Author) / Turner, Gregory H. (Author) / Liu, Qingwei (Author) / Frakes, David (Author) / Kodibagkar, Vikram (Author) / Kuang, Yang (Author) / Preul, Mark C. (Author) / Kostelich, Eric (Author) / College of Liberal Arts and Sciences (Contributor)
Created2017-05-31
149307-Thumbnail Image.png
Description
Continuous advancements in biomedical research have resulted in the production of vast amounts of scientific data and literature discussing them. The ultimate goal of computational biology is to translate these large amounts of data into actual knowledge of the complex biological processes and accurate life science models. The ability to

Continuous advancements in biomedical research have resulted in the production of vast amounts of scientific data and literature discussing them. The ultimate goal of computational biology is to translate these large amounts of data into actual knowledge of the complex biological processes and accurate life science models. The ability to rapidly and effectively survey the literature is necessary for the creation of large scale models of the relationships among biomedical entities as well as hypothesis generation to guide biomedical research. To reduce the effort and time spent in performing these activities, an intelligent search system is required. Even though many systems aid in navigating through this wide collection of documents, the vastness and depth of this information overload can be overwhelming. An automated extraction system coupled with a cognitive search and navigation service over these document collections would not only save time and effort, but also facilitate discovery of the unknown information implicitly conveyed in the texts. This thesis presents the different approaches used for large scale biomedical named entity recognition, and the challenges faced in each. It also proposes BioEve: an integrative framework to fuse a faceted search with information extraction to provide a search service that addresses the user's desire for "completeness" of the query results, not just the top-ranked ones. This information extraction system enables discovery of important semantic relationships between entities such as genes, diseases, drugs, and cell lines and events from biomedical text on MEDLINE, which is the largest publicly available database of the world's biomedical journal literature. It is an innovative search and discovery service that makes it easier to search
avigate and discover knowledge hidden in life sciences literature. To demonstrate the utility of this system, this thesis also details a prototype enterprise quality search and discovery service that helps researchers with a guided step-by-step query refinement, by suggesting concepts enriched in intermediate results, and thereby facilitating the "discover more as you search" paradigm.
ContributorsKanwar, Pradeep (Author) / Davulcu, Hasan (Thesis advisor) / Dinu, Valentin (Committee member) / Li, Baoxin (Committee member) / Arizona State University (Publisher)
Created2010
Description
In eukaryotes, most messenger RNA precursors (pre-mRNA) undergo extensive processing, leading to the cleavage of the transcript followed by the addition of a poly(A) tail. This process is executed by a large complex known as the Cleavage and Polyadenylation Complex (CPC). Its central subcomplex, the Cleavage and Polyadenylation Specificity Factor

In eukaryotes, most messenger RNA precursors (pre-mRNA) undergo extensive processing, leading to the cleavage of the transcript followed by the addition of a poly(A) tail. This process is executed by a large complex known as the Cleavage and Polyadenylation Complex (CPC). Its central subcomplex, the Cleavage and Polyadenylation Specificity Factor (CPSF) complex is responsible for recognizing a short hexameric element AAUAAA located at the 3’end in the nascent mRNA molecule and catalyzing the pre-mRNA cleavage. In the round nematode C. elegans, the cleavage reaction is executed by a subunit of this complex named CPSF3, a highly conserved RNA endonuclease. While the crystal structure of its human ortholog CPSF73 has been recently identified, we still do not understand the molecular mechanisms and sequence specificity used by this protein to induce cleavage, which in turn would help to understand how this process is executed in detail. Additionally, we do not understand in additional factors are needed for this process. In order to address these issues, we performed a comparative analysis of the CPSF3 protein in higher eukaryotes to identify conserved functional domains. The overall percent identities for members of the CPSF complex range from 33.68% to 56.49%, suggesting that the human and C. elegans orthologs retain a high level of conservation. CPSF73 is the protein with the overall highest percent identity of the CPSF complex, with its active site-containing domain possessing 74.60% identity with CPSF3. Additionally, we gathered and expressed using a bacterial expression system CPSF3 and a mutant, which is unable to perform the cleavage reaction, and developed an in vitro cleavage assay to test whether CPSF3 activity is necessary and sufficient to induce nascent mRNA cleavage. This project establishes tools to better understand how CPSF3 functions within the CPC and sheds light on the biology surrounding the transcription process as a whole.
ContributorsGallante, Christina (Author) / Mangone, Marco (Thesis director) / Sharma, Shalini (Committee member) / Hrach, Heather (Committee member) / School of Life Sciences (Contributor) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131567-Thumbnail Image.png
Description
The successful reduction of CO2 and protons by a light-induced cobalt porphyrin/cytb562 hybrid metalloenzyme in water is reported. Incorporation of the porphyrin into a protein scaffold results in increases in CO and H2 production over naked porphyrin. Rational point mutations to the CoPPIX binding site of cytb562 modulate production,

The successful reduction of CO2 and protons by a light-induced cobalt porphyrin/cytb562 hybrid metalloenzyme in water is reported. Incorporation of the porphyrin into a protein scaffold results in increases in CO and H2 production over naked porphyrin. Rational point mutations to the CoPPIX binding site of cytb562 modulate production, indicating possible further improvements in catalytic activity.
ContributorsGwerder, Noah D (Author) / Ghirlanda, Giovanna (Thesis director) / Williams, Peter (Committee member) / Mangone, Marco (Committee member) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
132725-Thumbnail Image.png
Description
Duchenne muscular dystrophy (DMD) is a lethal, X-linked disease which occurs in approximately 1 in 3,500 male births. This disease is characterized by progressive muscle wasting and causes premature death. One of the earliest symptoms of this disease is mitochondrial dysfunction. Dystrophin is a protein found under the sarcolemma. The

Duchenne muscular dystrophy (DMD) is a lethal, X-linked disease which occurs in approximately 1 in 3,500 male births. This disease is characterized by progressive muscle wasting and causes premature death. One of the earliest symptoms of this disease is mitochondrial dysfunction. Dystrophin is a protein found under the sarcolemma. The N terminus binds to actin and the C terminus binds to dystrophin glycoprotein complex (DGC). DMD is caused by mutations in the dystrophin gene. C. elegans possess an ortholog of dystrophin, DYS-1. Though there is evidence that C. elegans can be used as a model organism to model DMD, nematode DGC has not been well characterized. Additionally, while we know that mitochondrial dysfunction has been found in humans and other model organisms, this has not been well defined in C. elegans. In order to address these issues, we crossed the SJ4103 worm strain (myo-3p::GFP(mit)) with dys-1(cx18) in order to visualize and quantify changes in mitochondria in a dys-1 background. SJ4103;cx18 nematodes were found to have less mitochondrial than SJ4103 which suggests mitochondrial dysfunction does occur in dys-1 worms. Furthermore, mitochondrial dysfunction was studied by knocking down members of the DGC, dys-1, dyb-1, sgn-1, sgca-1, and sgcb-1 in SJ4103 strain. Knock down of each gene resulted in decrease in abundance of mitochondria which suggests that each member of the DGC contributes to the overall health of nematode muscle. The ORF of dyb-1 was successfully cloned and tagged with GFP in order to visualize this DGC member C. elegans. Imaging of the transgenic dyb-1::GFP worm shows green fluoresce expressed in which suggests that dyb-1 is a functional component of the muscle fibers. This project will enable us to better understand the effects of dystrophin deficiency on mitochondrial function as well as visualize the expression of certain members of the DGC in order to establish C. elegans as a good model organism to study this disease.
ContributorsObrien, Shannon Nishino (Author) / Mangone, Marco (Thesis director) / Newbern, Jason (Committee member) / Hrach, Heather (Committee member) / School of Molecular Sciences (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05