Matching Items (74)
Filtering by

Clear all filters

149725-Thumbnail Image.png
Description
Infections caused by the Hepatitis C Virus (HCV) are very common worldwide, affecting up to 3% of the population. Chronic infection of HCV may develop into liver cirrhosis and liver cancer which is among the top five of the most common cancers. Therefore, vaccines against HCV are under intense study

Infections caused by the Hepatitis C Virus (HCV) are very common worldwide, affecting up to 3% of the population. Chronic infection of HCV may develop into liver cirrhosis and liver cancer which is among the top five of the most common cancers. Therefore, vaccines against HCV are under intense study in order to prevent HCV from harming people's health. The envelope protein 2 (E2) of HCV is thought to be a promising vaccine candidate because it can directly bind to a human cell receptor and plays a role in viral entry. However, the E2 protein production in cells is inefficient due to its complicated matured structure. Folding of E2 in the endoplasmic reticulum (ER) is often error-prone, resulting in production of aggregates and misfolded proteins. These incorrect forms of E2 are not functional because they are not able to bind to human cells and stimulate antibody response to inhibit this binding. This study is aimed to overcome the difficulties of HCV E2 production in plant system. Protein folding in the ER requires great assistance from molecular chaperones. Thus, in this study, two molecular chaperones in the ER, calreticulin and calnexin, were transiently overexpressed in plant leaves in order to facilitate E2 folding and production. Both of them showed benefits in increasing the yield of E2 and improving the quality of E2. In addition, poorly folded E2 accumulated in the ER may cause stress in the ER and trigger transcriptional activation of ER molecular chaperones. Therefore, a transcription factor involved in this pathway, named bZIP60, was also overexpressed in plant leaves, aiming at up-regulating a major family of molecular chaperones called BiP to assist protein folding. However, our results showed that BiP mRNA levels were not up-regulated by bZIP60, but they increased in response to E2 expression. The Western blot analysis also showed that overexpression of bZIP60 had a small effect on promoting E2 folding. Overall, this study suggested that increasing the level of specific ER molecular chaperones was an effective way to promote HCV E2 protein production and maturation.
ContributorsHong, Fan (Author) / Mason, Hugh (Thesis advisor) / Gaxiola, Roberto (Committee member) / Chang, Yung (Committee member) / Chen, Qiang (Committee member) / Arizona State University (Publisher)
Created2011
150811-Thumbnail Image.png
Description
Over the past decade, several high-value proteins have been produced using plant-based transient expression systems. However, these studies exposed some limitations that must be overcome to allow plant expression systems to reach their full potential. These limitations are the low level of recombinant protein accumulation achieved in some cases, and

Over the past decade, several high-value proteins have been produced using plant-based transient expression systems. However, these studies exposed some limitations that must be overcome to allow plant expression systems to reach their full potential. These limitations are the low level of recombinant protein accumulation achieved in some cases, and lack of efficient co-expression vectors for the production of multi-protein complexes. This study report that tobacco Extensin (Ext) gene 3' untranslated region (UTR) can be broadly used to enhance recombinant protein expression in plants. Extensin is the hydroxyproline-rich glycoprotein that constitutes the major protein component of cell walls. Using transient expression, it was found that the Ext 3' UTR increases recombinant protein expression up to 13.5- and 6-fold in non-replicating and replicating vector systems, respectively, compared to previously established terminators. Enhanced protein accumulation was correlated with increased mRNA levels associated with reduction in read-through transcription. Regions of Ext 3' UTR essential for maximum gene expression included a poly-purine sequence used as a major poly-adenylation site. Furthermore, modified bean yellow dwarf virus (BeYDV)-based vectors designed to allow co-expression of multiple recombinant genes were constructed and tested for their performance in driving transient expression in plants. Robust co-expression and assembly of heavy and light chains of the anti-Ebola virus monoclonal antibody 6D8, as well as E. coli heat-labile toxin (LT) were achieved with the modified vectors. The simultaneous co-expression of three fluoroproteins using the single replicon, triple cassette is demonstrated by confocal microscopy. In conclusion, this study provides an excellent tool for rapid, cost-effective, large-scale manufacturing of recombinant proteins for use in medicine and industry.
ContributorsRosenthal, Sun Hee (Author) / Mason, Hugh (Thesis advisor) / Mor, Tsafrir (Committee member) / Chang, Yung (Committee member) / Arntzen, Charles (Committee member) / Arizona State University (Publisher)
Created2012
136109-Thumbnail Image.png
Description
Students across the United States lack the necessary skills to be successful college students in Science, Technology and Math (STEM) majors and as a result post-secondary institutions are developing summer bridge programs to aid in their transition. As they develop these programs, effective theory and approach are critical to developing

Students across the United States lack the necessary skills to be successful college students in Science, Technology and Math (STEM) majors and as a result post-secondary institutions are developing summer bridge programs to aid in their transition. As they develop these programs, effective theory and approach are critical to developing successful programs. Though there are a multitude of theories on successful student development, a focus on self-efficacy is critical. Summer Bridge programs across the country as well as the Bio Bridge summer program at Arizona State University were studied alone and through the lens of Cognitive Self-Efficacy Theory as mentioned in Albert Bandura's "Perceived Self-Efficacy in Cognitive Development and Functioning." Cognitive Self-Efficacy Theory provides a framework for self-efficacy development in academic settings. An analysis of fifteen bridge programs found that a large majority focused on developing academic capabilities and often overlooked development of community and social efficacy. An even larger number failed to focus on personal psychology in managing self-debilitating thought patterns based on published goals. Further, Arizona State University's Bio Bridge program could not be considered successful at developing cognitive self-efficacy or increasing retention as data was inconclusive. However, Bio Bridge was tremendously successful at developing social efficacy and community among participants and faculty. Further research and better evaluative techniques need to be developed to understand the program's effectiveness in cognitive self-efficacy development and retention.
ContributorsTummala, Sailesh Vardhan (Author) / Orchinik, Miles (Thesis director) / Brownell, Sara (Committee member) / Shortlidge, Erin (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2015-05
136082-Thumbnail Image.png
Description
Human Immunodeficiency Virus type 1 (HIV-1) causes millions of deaths every year, but a protective vaccine remains elusive. A promising vaccine strategy is to use virus-like particles (VLPs) for HIV-1. To this end, HIV-1 VLPs were produced in Nicotiana benthamiana plants that were stably expressing the HIV-1 Gag protein and

Human Immunodeficiency Virus type 1 (HIV-1) causes millions of deaths every year, but a protective vaccine remains elusive. A promising vaccine strategy is to use virus-like particles (VLPs) for HIV-1. To this end, HIV-1 VLPs were produced in Nicotiana benthamiana plants that were stably expressing the HIV-1 Gag protein and transiently expressing a truncated form of gp41. These VLPs were tested to determine their inherent adjuvant effects due to their production in plants in order to dissect the previously observed stimulating activity of these VLPs in a prime-boost vaccine approach. THP1 human monocytes were differentiated using PMA or IL-4 and GM-CSF to form macrophages and dendritic cells, respectively. These cells were treated with purified VLPs or control samples to determine the individual adjuvant effects of the plant, bacterial, and VLP components in the purified VLP samples. It was postulated that the PMA-differentiated THP1 cells were not induced to become macrophages due to the lack of CD11b+ cells in the sample and the lack of increased TNFα expression in response to LPS treatment. It was also determined that the VLPs have inherent adjuvant properties to dendritic cells due to bacterial and VLP components, but not due to plant components.
ContributorsDickey, Rebekah Marie (Author) / Mor, Tsafrir (Thesis director) / Blattman, Joseph (Committee member) / Meador, Lydia (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2015-05
136289-Thumbnail Image.png
Description
The Intercellular Adhesion Molecule-1 (ICAM-1, known as CD54) is a cell surface type I transmembrane glycoprotein with a molecular weight of 85 to 110 kDa. The primary function of ICAM-1 is to provide adhesion between endothelial cells and leukocytes after injury or stress. ICAM-1 is used as a receptor for

The Intercellular Adhesion Molecule-1 (ICAM-1, known as CD54) is a cell surface type I transmembrane glycoprotein with a molecular weight of 85 to 110 kDa. The primary function of ICAM-1 is to provide adhesion between endothelial cells and leukocytes after injury or stress. ICAM-1 is used as a receptor for various pathogens such as rhinoviruses, coxsackievirus A21 and the malaria parasite Plasmodium falciparum. ICAM-1 contains five immunoglobulin (Ig) domains in its long N-terminal extracellular region, a hydrophobic transmembrane domain, and a small C-terminal cytoplasmic domain. The Ig domains 1-2 and Ig domains 3-4-5 have been crystallized separately and their structure solved, however the full ICAM-1 structure has not been solved. Because ICAM-1 appears to be important for the mediation of cell-to-cell communication in physiological and pathological conditions, gaining a structural understanding of the full-length membrane anchored ICAM-1 is desirable. In this context, we have transiently expressed a plant-optimized gene encoding human ICAM-1 in Nicotiana benthamiana plants using the MagnICON expression system. The plant produced ICAM-1 is forming aggregates according to previous data. Thus, the current extraction and purification protocols have been altered to include TCEP, a reducing agent. The protein was purified using TALON metal affinity resin and partially characterized using various biochemical techniques. Our results show that there is a reduction in aggregation formation with the use of TCEP.
ContributorsPatel, Heeral (Author) / Mor, Tsafrir (Thesis director) / Mason, Hugh (Committee member) / Kannan, Latha (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2015-05
136320-Thumbnail Image.png
Description
Variants of human butyrylcholinesterase (BChE) have been designed to have high cocaine hydrolytic activity. These variants have potential pharmacological applications toward treating cocaine overdose and addiction. These enzymes must be stable in the human body over fairly long periods of time in order to be effective at treating cocaine addiction.

Variants of human butyrylcholinesterase (BChE) have been designed to have high cocaine hydrolytic activity. These variants have potential pharmacological applications toward treating cocaine overdose and addiction. These enzymes must be stable in the human body over fairly long periods of time in order to be effective at treating cocaine addiction. Recombinantly expressed BChE, however, tends to be in monomer or dimer oligomeric forms, which are far less stable than the tetramer form of the enzyme. When BChE is transiently expressed in Nicotiana benthamiana, it is produced mainly as monomers and dimers. However, when the protein is expressed through stable transformation, it produces much greater proportions of tetramers. Tetramerization of WT human plasma derived BChE is facilitated by the binding of a proline rich peptide. In this thesis, I investigated if a putative plant-derived analog of the mammalian proline-rich attachment domain caused stably expressed cocaine hydrolase variants of human BChE to undergo tetramerization. I also examined if co-expression of peptides with known proline-rich attachment domains further shifted the monomer-tetramer ratio toward the tetramer.
ContributorsKendle, Robert Player (Author) / Mor, Tsafrir (Thesis director) / Mason, Hugh (Committee member) / Larrimore, Kathy (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2015-05
136192-Thumbnail Image.png
Description
Is it possible to treat the mouth as a natural environment, and determine new methods to keep the microbiome in check? The need for biodiversity in health may suggest that every species carries out a specific function that is required to maintain equilibrium and homeostasis within the oral cavity. Furthermore,

Is it possible to treat the mouth as a natural environment, and determine new methods to keep the microbiome in check? The need for biodiversity in health may suggest that every species carries out a specific function that is required to maintain equilibrium and homeostasis within the oral cavity. Furthermore, the relationship between the microbiome and its host is mutually beneficial because the host is providing microbes with an environment in which they can flourish and, in turn, keep their host healthy. Reviewing examples of larger scale environmental shifts could provide a window by which scientists can make hypotheses. Certain medications and healthcare treatments have been proven to cause xerostomia. This disorder is characterized by a dry mouth, and known to be associated with a change in the composition, and reduction, of saliva. Two case studies performed by Bardow et al, and Leal et al, tested and studied the relationships of certain medications and confirmed their side effects on the salivary glands [2,3]. Their results confirmed a relationship between specific medicines, and the correlating complaints of xerostomia. In addition, Vissink et al conducted case studies that helped to further identify how radiotherapy causes hyposalivation of the salivary glands [4]. Specifically patients that have been diagnosed with oral cancer, and are treated by radiotherapy, have been diagnosed with xerostomia. As stated prior, studies have shown that patients having an ecologically balanced and diverse microbiome tend to have healthier mouths. The oral cavity is like any biome, consisting of commensalism within itself and mutualism with its host. Due to the decreased salivary output, caused by xerostomia, increased parasitic bacteria build up within the oral cavity thus causing dental disease. Every human body contains a personalized microbiome that is essential to maintaining health but capable of eliciting disease. The Human Oral Microbiomics Database (HOMD) is a set of reference 16S rRNA gene sequences. These are then used to define individual human oral taxa. By conducting metagenomic experiments at the molecular and cellular level, scientists can identify and label micro species that inhabit the mouth during parasitic outbreaks or a shifting of the microbiome. Because the HOMD is incomplete, so is our ability to cure, or prevent, oral disease. The purpose of the thesis is to research what is known about xerostomia and its effects on the complex microbiome of the oral cavity. It is important that researchers determine whether this particular perspective is worth considering. In addition, the goal is to create novel experiments for treatment and prevention of dental diseases.
ContributorsHalcomb, Michael Jordan (Author) / Chen, Qiang (Thesis director) / Steele, Kelly (Committee member) / Barrett, The Honors College (Contributor) / College of Letters and Sciences (Contributor)
Created2015-05
136827-Thumbnail Image.png
Description
Collaborative learning has been found to enhance student learning experiences through interaction with peers and instructors in a way that typically does not occur in a traditional lecture course. However, more than half of all collaborative learning structures have failed to last very long after their initial introductions which makes

Collaborative learning has been found to enhance student learning experiences through interaction with peers and instructors in a way that typically does not occur in a traditional lecture course. However, more than half of all collaborative learning structures have failed to last very long after their initial introductions which makes understanding the factors of collaboration that make it successful very important. The purpose of this study was to evaluate collaborative learning in a blended learning course to gauge student perceptions and the factors of collaboration and student demographics that impact that perception. This was done by surveying a sample of students in BIO 282 about their experiences in the BIO 281 course they took previously which was a new introductory Biology course with a blended learning structure. It was found that students agree that collaboration is beneficial as it provides an opportunity to gain additional insight from peers and improve students' understanding of course content. Also, differences in student gender and first generation status have less of an effect on student perceptions of collaboration than differences in academic achievement (grade) bracket.
ContributorsVu, Bethany Thao-Vy (Author) / Stout, Valerie (Thesis director) / Brownell, Sara (Committee member) / Wright, Christian (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2014-05
137715-Thumbnail Image.png
Description
The objectives of this review include a discussion of the West Nile Virus phylogeny, transmission history, how the virus functions in the body and how it is a threat to public health, and then discusses these items related to vaccine technology surrounding West Nile Virus. This will include past developments,

The objectives of this review include a discussion of the West Nile Virus phylogeny, transmission history, how the virus functions in the body and how it is a threat to public health, and then discusses these items related to vaccine technology surrounding West Nile Virus. This will include past developments, current research in the field and what it may take to develop such a vaccine safe and economical for human usage.
ContributorsSlinker, Haleigh Renee (Author) / Chen, Qiang (Thesis director) / Huffman, Holly (Committee member) / Oberstein, Bruce (Committee member) / Barrett, The Honors College (Contributor) / School of Letters and Sciences (Contributor)
Created2013-05
137763-Thumbnail Image.png
Description
Lipid microdomains play a vital role in a number of biological processes. They are often a target of diseases and viruses. Viruses in particular utilize lipid microdomains to gain entry and fuse with the host-cell membrane. Measles virus (MV) a human pathogen, spread from cell to cell by inducing fusion

Lipid microdomains play a vital role in a number of biological processes. They are often a target of diseases and viruses. Viruses in particular utilize lipid microdomains to gain entry and fuse with the host-cell membrane. Measles virus (MV) a human pathogen, spread from cell to cell by inducing fusion of cellular membranes. This causes the formation of large multinucleated cells, syncytia. It has been previously reported that lipid microdomains are essential for measles virus infection/replication. In this study we used methyl beta cyclodextrin (MBCD), a cholesterol-sequestering agent to disrupt lipid microdomains. Through transfection of Vero h/SLAM cells, we found that Measles virus fusion was dependent on lipid microdomains integrity. Indeed, a dose dependent fusion inhibition was documented with increasing concentrations of MBCD resulting in reduced formation of syncytia.
ContributorsKwan, Jason (Author) / Reyes del Valle, Jorge (Thesis director) / Chang, Yung (Committee member) / Mor, Tsafrir (Committee member) / Barrett, The Honors College (Contributor) / Department of Finance (Contributor) / School of Life Sciences (Contributor)
Created2013-05