Matching Items (513)
Filtering by

Clear all filters

137766-Thumbnail Image.png
Description
Background: Breast cancer is the most frequently diagnosed cancer and the leading cause of cancer deaths in females worldwide, accounting for 23% of all new cancer cases and 14% of all total cancer deaths in 2008. Five tumor-normal pairs of primary breast epithelial cells were treated for infinite proliferation by

Background: Breast cancer is the most frequently diagnosed cancer and the leading cause of cancer deaths in females worldwide, accounting for 23% of all new cancer cases and 14% of all total cancer deaths in 2008. Five tumor-normal pairs of primary breast epithelial cells were treated for infinite proliferation by using a ROCK inhibitor and mouse feeder cells. Methods: Raw paired-end, 100x coverage RNA-Seq data was aligned to the Human Reference Genome Version 19 using BWA and Tophat. Gene differential expression analysis was completed using Cufflinks and Cuffdiff. Interactive Genome Viewer was used for data visualization. Results: 15 genes were found to be down-regulated by at least one log-fold change in 4/5 of tumor samples. 75 genes were found to be down-regulated in 3/5 of our tumor samples by at least one log-fold change. 11 genes were found to be up-regulated in 4/5 of our tumor samples, and 68 genes were identified to be up-regulated in 3/5 of the tumor samples by at least one-fold change. Conclusion: Expression changes in genes such as AZGP1, AGER, ALG11, and S1007 suggest a disruption in the glycosylation pathway. No correlation was found between Cufflink's Her2 gene-expression and DAKO score classification.
ContributorsHernandez, Fernando (Author) / Anderson, Karen (Thesis director) / Mangone, Marco (Committee member) / Park, Jin (Committee member) / Barrett, The Honors College (Contributor) / Department of Information Systems (Contributor)
Created2013-05
141463-Thumbnail Image.png
Description

Five immunocompetent C57BL/6-cBrd/cBrd/Cr (albino C57BL/6) mice were injected with GL261-luc2 cells, a cell line sharing characteristics of human glioblastoma multiforme (GBM). The mice were imaged using magnetic resonance (MR) at five separate time points to characterize growth and development of the tumor. After 25 days, the final tumor volumes of

Five immunocompetent C57BL/6-cBrd/cBrd/Cr (albino C57BL/6) mice were injected with GL261-luc2 cells, a cell line sharing characteristics of human glioblastoma multiforme (GBM). The mice were imaged using magnetic resonance (MR) at five separate time points to characterize growth and development of the tumor. After 25 days, the final tumor volumes of the mice varied from 12 mm3 to 62 mm3, even though mice were inoculated from the same tumor cell line under carefully controlled conditions. We generated hypotheses to explore large variances in final tumor size and tested them with our simple reaction-diffusion model in both a 3-dimensional (3D) finite difference method and a 2-dimensional (2D) level set method. The parameters obtained from a best-fit procedure, designed to yield simulated tumors as close as possible to the observed ones, vary by an order of magnitude between the three mice analyzed in detail. These differences may reflect morphological and biological variability in tumor growth, as well as errors in the mathematical model, perhaps from an oversimplification of the tumor dynamics or nonidentifiability of parameters. Our results generate parameters that match other experimental in vitro and in vivo measurements. Additionally, we calculate wave speed, which matches with other rat and human measurements.

ContributorsRutter, Erica (Author) / Stepien, Tracy (Author) / Anderies, Barrett (Author) / Plasencia, Jonathan (Author) / Woolf, Eric C. (Author) / Scheck, Adrienne C. (Author) / Turner, Gregory H. (Author) / Liu, Qingwei (Author) / Frakes, David (Author) / Kodibagkar, Vikram (Author) / Kuang, Yang (Author) / Preul, Mark C. (Author) / Kostelich, Eric (Author) / College of Liberal Arts and Sciences (Contributor)
Created2017-05-31