Matching Items (142)
Filtering by

Clear all filters

149975-Thumbnail Image.png
Description
Phosphorus (P), an essential element for life, is becoming increasingly scarce, and its global management presents a serious challenge. As urban environments dominate the landscape, we need to elucidate how P cycles in urban ecosystems to better understand how cities contribute to — and provide opportunities to solve — problems

Phosphorus (P), an essential element for life, is becoming increasingly scarce, and its global management presents a serious challenge. As urban environments dominate the landscape, we need to elucidate how P cycles in urban ecosystems to better understand how cities contribute to — and provide opportunities to solve — problems of P management. The goal of my research was to increase our understanding of urban P cycling in the context of urban resource management through analysis of existing ecological and socio-economic data supplemented with expert interviews in order to facilitate a transition to sustainable P management. Study objectives were to: I) Quantify and map P stocks and flows in the Phoenix metropolitan area and analyze the drivers of spatial distribution and dynamics of P flows; II) examine changes in P-flow dynamics at the urban agricultural interface (UAI), and the drivers of those changes, between 1978 and 2008; III) compare the UAI's average annual P budget to the global agricultural P budget; and IV) explore opportunities for more sustainable P management in Phoenix. Results showed that Phoenix is a sink for P, and that agriculture played a primary role in the dynamics of P cycling. Internal P dynamics at the UAI shifted over the 30-year study period, with alfalfa replacing cotton as the main locus of agricultural P cycling. Results also suggest that the extent of P recycling in Phoenix is proportionally larger than comparable estimates available at the global scale due to the biophysical characteristics of the region and the proximity of various land uses. Uncertainty remains about the effectiveness of current recycling strategies and about best management strategies for the future because we do not have sufficient data to use as basis for evaluation and decision-making. By working in collaboration with practitioners, researchers can overcome some of these data limitations to develop a deeper understanding of the complexities of P dynamics and the range of options available to sustainably manage P. There is also a need to better connect P management with that of other resources, notably water and other nutrients, in order to sustainably manage cities.
ContributorsMetson, Genevieve (Author) / Childers, Daniel (Thesis advisor) / Aggarwal, Rimjhim (Thesis advisor) / Redman, Charles (Committee member) / Arizona State University (Publisher)
Created2011
150146-Thumbnail Image.png
Description
Driven by concern over environmental, economic and social problems, small, place based communities are engaging in processes of transition to become more sustainable. These communities may be viewed as innovative front runners of a transition to a more sustainable society in general, each one, an experiment in social transformation. These

Driven by concern over environmental, economic and social problems, small, place based communities are engaging in processes of transition to become more sustainable. These communities may be viewed as innovative front runners of a transition to a more sustainable society in general, each one, an experiment in social transformation. These experiments present learning opportunities to build robust theories of community transition and to create specific, actionable knowledge to improve, replicate, and accelerate transitions in real communities. Yet to date, there is very little empirical research into the community transition phenomenon. This thesis empirically develops an analytical framework and method for the purpose of researching community transition processes, the ultimate goal of which is to arrive at a practice of evidence based transitions. A multiple case study approach was used to investigate three community transitions while simultaneously developing the framework and method in an iterative fashion. The case studies selected were Ashton Hayes, a small English village, BedZED, an urban housing complex in London, and Forres, a small Scottish town. Each community was visited and data collected by interview and document analysis. The research design brings together elements of process tracing, transformative planning and governance, sustainability assessment, transition path analysis and transition management within a multiple case study envelope. While some preliminary insights are gained into community transitions based on the three cases the main contribution of this thesis is in the creation of the research framework and method. The general framework and method developed has potential for standardizing and synthesizing research of community transition processes leading to both theoretical and practical knowledge that allows sustainability transition to be approached with confidence and not just hope.
ContributorsForrest, Nigel (Author) / Wiek, Arnim (Thesis advisor) / Golub, Aaron (Thesis advisor) / Redman, Charles (Committee member) / White, Dave (Committee member) / Arizona State University (Publisher)
Created2011
152187-Thumbnail Image.png
Description
Sustainable development in an American context implies an ongoing shift from quantitative growth in energy, resource, and land use to the qualitative development of social-ecological systems, human capital, and dense, vibrant built environments. Sustainable urban development theory emphasizes locally and bioregionally emplaced economic development where the relationships between people, localities,

Sustainable development in an American context implies an ongoing shift from quantitative growth in energy, resource, and land use to the qualitative development of social-ecological systems, human capital, and dense, vibrant built environments. Sustainable urban development theory emphasizes locally and bioregionally emplaced economic development where the relationships between people, localities, products, and capital are tangible to and controllable by local stakeholders. Critical theory provides a mature understanding of the political economy of land development in capitalist economies, representing a crucial bridge between urban sustainability's infill development goals and the contemporary realities of the development industry. Since its inception, Phoenix, Arizona has exemplified the quantitative growth paradigm, and recurring instances of land speculation, non-local capital investment, and growth-based public policy have stymied local, tangible control over development from Phoenix's territorial history to modern attempts at downtown revitalization. Utilizing property ownership and sales data as well as interviews with development industry stakeholders, the political economy of infill land development in downtown Phoenix during the mid-2000s boom-and-bust cycle is analyzed. Data indicate that non-local property ownership has risen significantly over the past 20 years and rent-seeking land speculation has been a significant barrier to infill development. Many speculative strategies monopolize the publicly created value inherent in zoning entitlements, tax incentives and property assessment, indicating that political and policy reforms targeted at a variety of governance levels are crucial for achieving the sustainable development of urban land. Policy solutions include reforming the interconnected system of property sales, value assessment, and taxation to emphasize property use values; replacing existing tax incentives with tax increment financing and community development benefit agreements; regulating vacant land ownership and deed transfers; and encouraging innovative private development and tenure models like generative construction and community land trusts.
ContributorsStanley, Benjamin W (Author) / Boone, Christopher G. (Thesis advisor) / Redman, Charles (Committee member) / Bolin, Robert (Committee member) / Arizona State University (Publisher)
Created2013
152206-Thumbnail Image.png
Description
This dissertation explores the unique role schools play in contributing toward a sustainable future for their communities. This was undertaken by first conducting a thorough review and analysis of the literature on the current utilization of schools as agents of sustainable development, along with an evaluation of schools engaging in

This dissertation explores the unique role schools play in contributing toward a sustainable future for their communities. This was undertaken by first conducting a thorough review and analysis of the literature on the current utilization of schools as agents of sustainable development, along with an evaluation of schools engaging in this model around the United States. Following this, a framework was developed to aid in the assessment of school-community engagements from the perspective of social change. Sustainability problem solving tools were synthesized for use by schools and community stakeholders, and were tested in the case study of this dissertation. This case study combined methods from the fields of sustainable development, transition management, and social change to guide two schools in their attempts to increase community sustainability through addressing a shared sustainability problem: childhood obesity. The case study facilitated the creation of a sustainable vision for the Phoenix Metropolitan Area without childhood obesity, as well as strategic actions plans for each school to utilize as they move forward on addressing this challenge.
ContributorsLawless, Tamara Hope (Author) / Golub, Aaron (Thesis advisor) / Redman, Charles (Committee member) / Schugurensky, Daniel, 1958- (Committee member) / Arizona State University (Publisher)
Created2013
152165-Thumbnail Image.png
Description
Surgery as a profession requires significant training to improve both clinical decision making and psychomotor proficiency. In the medical knowledge domain, tools have been developed, validated, and accepted for evaluation of surgeons' competencies. However, assessment of the psychomotor skills still relies on the Halstedian model of apprenticeship, wherein surgeons are

Surgery as a profession requires significant training to improve both clinical decision making and psychomotor proficiency. In the medical knowledge domain, tools have been developed, validated, and accepted for evaluation of surgeons' competencies. However, assessment of the psychomotor skills still relies on the Halstedian model of apprenticeship, wherein surgeons are observed during residency for judgment of their skills. Although the value of this method of skills assessment cannot be ignored, novel methodologies of objective skills assessment need to be designed, developed, and evaluated that augment the traditional approach. Several sensor-based systems have been developed to measure a user's skill quantitatively, but use of sensors could interfere with skill execution and thus limit the potential for evaluating real-life surgery. However, having a method to judge skills automatically in real-life conditions should be the ultimate goal, since only with such features that a system would be widely adopted. This research proposes a novel video-based approach for observing surgeons' hand and surgical tool movements in minimally invasive surgical training exercises as well as during laparoscopic surgery. Because our system does not require surgeons to wear special sensors, it has the distinct advantage over alternatives of offering skills assessment in both learning and real-life environments. The system automatically detects major skill-measuring features from surgical task videos using a computing system composed of a series of computer vision algorithms and provides on-screen real-time performance feedback for more efficient skill learning. Finally, the machine-learning approach is used to develop an observer-independent composite scoring model through objective and quantitative measurement of surgical skills. To increase effectiveness and usability of the developed system, it is integrated with a cloud-based tool, which automatically assesses surgical videos upload to the cloud.
ContributorsIslam, Gazi (Author) / Li, Baoxin (Thesis advisor) / Liang, Jianming (Thesis advisor) / Dinu, Valentin (Committee member) / Greenes, Robert (Committee member) / Smith, Marshall (Committee member) / Kahol, Kanav (Committee member) / Patel, Vimla L. (Committee member) / Arizona State University (Publisher)
Created2013
152123-Thumbnail Image.png
Description
This dissertation investigates the condition of skeletal muscle insulin resistance using bioinformatics and computational biology approaches. Drawing from several studies and numerous data sources, I have attempted to uncover molecular mechanisms at multiple levels. From the detailed atomistic simulations of a single protein, to datamining approaches applied at the systems

This dissertation investigates the condition of skeletal muscle insulin resistance using bioinformatics and computational biology approaches. Drawing from several studies and numerous data sources, I have attempted to uncover molecular mechanisms at multiple levels. From the detailed atomistic simulations of a single protein, to datamining approaches applied at the systems biology level, I provide new targets to explore for the research community. Furthermore I present a new online web resource that unifies various bioinformatics databases to enable discovery of relevant features in 3D protein structures.
ContributorsMielke, Clinton (Author) / Mandarino, Lawrence (Committee member) / LaBaer, Joshua (Committee member) / Magee, D. Mitchell (Committee member) / Dinu, Valentin (Committee member) / Willis, Wayne (Committee member) / Arizona State University (Publisher)
Created2013
150897-Thumbnail Image.png
Description
The living world we inhabit and observe is extraordinarily complex. From the perspective of a person analyzing data about the living world, complexity is most commonly encountered in two forms: 1) in the sheer size of the datasets that must be analyzed and the physical number of mathematical computations necessary

The living world we inhabit and observe is extraordinarily complex. From the perspective of a person analyzing data about the living world, complexity is most commonly encountered in two forms: 1) in the sheer size of the datasets that must be analyzed and the physical number of mathematical computations necessary to obtain an answer and 2) in the underlying structure of the data, which does not conform to classical normal theory statistical assumptions and includes clustering and unobserved latent constructs. Until recently, the methods and tools necessary to effectively address the complexity of biomedical data were not ordinarily available. The utility of four methods--High Performance Computing, Monte Carlo Simulations, Multi-Level Modeling and Structural Equation Modeling--designed to help make sense of complex biomedical data are presented here.
ContributorsBrown, Justin Reed (Author) / Dinu, Valentin (Thesis advisor) / Johnson, William (Committee member) / Petitti, Diana (Committee member) / Arizona State University (Publisher)
Created2012
151020-Thumbnail Image.png
Description
Critical care environments are complex in nature. Fluctuating team dynamics and the plethora of technology and equipment create unforeseen demands on clinicians. Such environments become chaotic very quickly due to the chronic exposure to unpredictable clusters of events. In order to cope with this complexity, clinicians tend to develop ad-hoc

Critical care environments are complex in nature. Fluctuating team dynamics and the plethora of technology and equipment create unforeseen demands on clinicians. Such environments become chaotic very quickly due to the chronic exposure to unpredictable clusters of events. In order to cope with this complexity, clinicians tend to develop ad-hoc adaptations to function in an effective manner. It is these adaptations or "deviations" from expected behaviors that provide insight into the processes that shape the overall behavior of the complex system. The research described in this manuscript examines the cognitive basis of clinicians' adaptive mechanisms and presents a methodology for studying the same. Examining interactions in complex systems is difficult due to the disassociation between the nature of the environment and the tools available to analyze underlying processes. In this work, the use of a mixed methodology framework to study trauma critical care, a complex environment, is presented. The hybrid framework supplements existing methods of data collection (qualitative observations) with quantitative methods (use of electronic tags) to capture activities in the complex system. Quantitative models of activities (using Hidden Markov Modeling) and theoretical models of deviations were developed to support this mixed methodology framework. The quantitative activity models developed were tested with a set of fifteen simulated activities that represent workflow in trauma care. A mean recognition rate of 87.5% was obtained in automatically recognizing activities. Theoretical models, on the other hand, were developed using field observations of 30 trauma cases. The analysis of the classification schema (with substantial inter-rater reliability) and 161 deviations identified shows that expertise and role played by the clinician in the trauma team influences the nature of deviations made (p<0.01). The results shows that while expert clinicians deviate to innovate, deviations of novices often result in errors. Experts' flexibility and adaptiveness allow their deviations to generate innovative ideas, in particular when dynamic adjustments are required in complex situations. The findings suggest that while adherence to protocols and standards is important for novice practitioners to reduce medical errors and ensure patient safety, there is strong need for training novices in coping with complex situations as well.
ContributorsVankipuram, Mithra (Author) / Greenes, Robert A (Thesis advisor) / Patel, Vimla L. (Thesis advisor) / Petitti, Diana B. (Committee member) / Dinu, Valentin (Committee member) / Smith, Marshall L. (Committee member) / Arizona State University (Publisher)
Created2012
150708-Thumbnail Image.png
Description
This work involved the analysis of a public health system, and the design, development and deployment of enterprise informatics architecture, and sustainable community methods to address problems with the current public health system. Specifically, assessment of the Nationally Notifiable Disease Surveillance System (NNDSS) was instrumental in forming the design of

This work involved the analysis of a public health system, and the design, development and deployment of enterprise informatics architecture, and sustainable community methods to address problems with the current public health system. Specifically, assessment of the Nationally Notifiable Disease Surveillance System (NNDSS) was instrumental in forming the design of the current implementation at the Southern Nevada Health District (SNHD). The result of the system deployment at SNHD was considered as a basis for projecting the practical application and benefits of an enterprise architecture. This approach has resulted in a sustainable platform to enhance the practice of public health by improving the quality and timeliness of data, effectiveness of an investigation, and reporting across the continuum.
ContributorsKriseman, Jeffrey Michael (Author) / Dinu, Valentin (Thesis advisor) / Greenes, Robert (Committee member) / Johnson, William (Committee member) / Arizona State University (Publisher)
Created2012
151234-Thumbnail Image.png
Description
Immunosignaturing is a technology that allows the humoral immune response to be observed through the binding of antibodies to random sequence peptides. The immunosignaturing microarray is based on complex mixtures of antibodies binding to arrays of random sequence peptides in a multiplexed fashion. There are computational and statistical challenges to

Immunosignaturing is a technology that allows the humoral immune response to be observed through the binding of antibodies to random sequence peptides. The immunosignaturing microarray is based on complex mixtures of antibodies binding to arrays of random sequence peptides in a multiplexed fashion. There are computational and statistical challenges to the analysis of immunosignaturing data. The overall aim of my dissertation is to develop novel computational and statistical methods for immunosignaturing data to access its potential for diagnostics and drug discovery. Firstly, I discovered that a classification algorithm Naive Bayes which leverages the biological independence of the probes on our array in such a way as to gather more information outperforms other classification algorithms due to speed and accuracy. Secondly, using this classifier, I then tested the specificity and sensitivity of immunosignaturing platform for its ability to resolve four different diseases (pancreatic cancer, pancreatitis, type 2 diabetes and panIN) that target the same organ (pancreas). These diseases were separated with >90% specificity from controls and from each other. Thirdly, I observed that the immunosignature of type 2 diabetes and cardiovascular complications are unique, consistent, and reproducible and can be separated by 100% accuracy from controls. But when these two complications arise in the same person, the resultant immunosignature is quite different in that of individuals with only one disease. I developed a method to trace back from informative random peptides in disease signatures to the potential antigen(s). Hence, I built a decipher system to trace random peptides in type 1 diabetes immunosignature to known antigens. Immunosignaturing, unlike the ELISA, has the ability to not only detect the presence of response but also absence of response during a disease. I observed, not only higher but also lower peptides intensities can be mapped to antigens in type 1 diabetes. To study immunosignaturing potential for population diagnostics, I studied effect of age, gender and geographical location on immunosignaturing data. For its potential to be a health monitoring technology, I proposed a single metric Coefficient of Variation that has shown potential to change significantly when a person enters a disease state.
ContributorsKukreja, Muskan (Author) / Johnston, Stephen Albert (Thesis advisor) / Stafford, Phillip (Committee member) / Dinu, Valentin (Committee member) / Arizona State University (Publisher)
Created2012