Matching Items (262)
Filtering by

Clear all filters

151656-Thumbnail Image.png
Description
Image resolution limits the extent to which zooming enhances clarity, restricts the size digital photographs can be printed at, and, in the context of medical images, can prevent a diagnosis. Interpolation is the supplementing of known data with estimated values based on a function or model involving some or all

Image resolution limits the extent to which zooming enhances clarity, restricts the size digital photographs can be printed at, and, in the context of medical images, can prevent a diagnosis. Interpolation is the supplementing of known data with estimated values based on a function or model involving some or all of the known samples. The selection of the contributing data points and the specifics of how they are used to define the interpolated values influences how effectively the interpolation algorithm is able to estimate the underlying, continuous signal. The main contributions of this dissertation are three fold: 1) Reframing edge-directed interpolation of a single image as an intensity-based registration problem. 2) Providing an analytical framework for intensity-based registration using control grid constraints. 3) Quantitative assessment of the new, single-image enlargement algorithm based on analytical intensity-based registration. In addition to single image resizing, the new methods and analytical approaches were extended to address a wide range of applications including volumetric (multi-slice) image interpolation, video deinterlacing, motion detection, and atmospheric distortion correction. Overall, the new approaches generate results that more accurately reflect the underlying signals than less computationally demanding approaches and with lower processing requirements and fewer restrictions than methods with comparable accuracy.
ContributorsZwart, Christine M. (Author) / Frakes, David H (Thesis advisor) / Karam, Lina (Committee member) / Kodibagkar, Vikram (Committee member) / Spanias, Andreas (Committee member) / Towe, Bruce (Committee member) / Arizona State University (Publisher)
Created2013
151860-Thumbnail Image.png
Description
Cancer is the second leading cause of death in the United States and novel methods of treating advanced malignancies are of high importance. Of these deaths, prostate cancer and breast cancer are the second most fatal carcinomas in men and women respectively, while pancreatic cancer is the fourth most fatal

Cancer is the second leading cause of death in the United States and novel methods of treating advanced malignancies are of high importance. Of these deaths, prostate cancer and breast cancer are the second most fatal carcinomas in men and women respectively, while pancreatic cancer is the fourth most fatal in both men and women. Developing new drugs for the treatment of cancer is both a slow and expensive process. It is estimated that it takes an average of 15 years and an expense of $800 million to bring a single new drug to the market. However, it is also estimated that nearly 40% of that cost could be avoided by finding alternative uses for drugs that have already been approved by the Food and Drug Administration (FDA). The research presented in this document describes the testing, identification, and mechanistic evaluation of novel methods for treating many human carcinomas using drugs previously approved by the FDA. A tissue culture plate-based screening of FDA approved drugs will identify compounds that can be used in combination with the protein TRAIL to induce apoptosis selectively in cancer cells. Identified leads will next be optimized using high-throughput microfluidic devices to determine the most effective treatment conditions. Finally, a rigorous mechanistic analysis will be conducted to understand how the FDA-approved drug mitoxantrone, sensitizes cancer cells to TRAIL-mediated apoptosis.
ContributorsTaylor, David (Author) / Rege, Kaushal (Thesis advisor) / Jayaraman, Arul (Committee member) / Nielsen, David (Committee member) / Kodibagkar, Vikram (Committee member) / Dai, Lenore (Committee member) / Arizona State University (Publisher)
Created2013
152200-Thumbnail Image.png
Description
Magnetic Resonance Imaging using spiral trajectories has many advantages in speed, efficiency in data-acquistion and robustness to motion and flow related artifacts. The increase in sampling speed, however, requires high performance of the gradient system. Hardware inaccuracies from system delays and eddy currents can cause spatial and temporal distortions in

Magnetic Resonance Imaging using spiral trajectories has many advantages in speed, efficiency in data-acquistion and robustness to motion and flow related artifacts. The increase in sampling speed, however, requires high performance of the gradient system. Hardware inaccuracies from system delays and eddy currents can cause spatial and temporal distortions in the encoding gradient waveforms. This causes sampling discrepancies between the actual and the ideal k-space trajectory. Reconstruction assuming an ideal trajectory can result in shading and blurring artifacts in spiral images. Current methods to estimate such hardware errors require many modifications to the pulse sequence, phantom measurements or specialized hardware. This work presents a new method to estimate time-varying system delays for spiral-based trajectories. It requires a minor modification of a conventional stack-of-spirals sequence and analyzes data collected on three orthogonal cylinders. The method is fast, robust to off-resonance effects, requires no phantom measurements or specialized hardware and estimate variable system delays for the three gradient channels over the data-sampling period. The initial results are presented for acquired phantom and in-vivo data, which show a substantial reduction in the artifacts and improvement in the image quality.
ContributorsBhavsar, Payal (Author) / Pipe, James G (Thesis advisor) / Frakes, David (Committee member) / Kodibagkar, Vikram (Committee member) / Arizona State University (Publisher)
Created2013
152201-Thumbnail Image.png
Description
Coronary computed tomography angiography (CTA) has a high negative predictive value for ruling out coronary artery disease with non-invasive evaluation of the coronary arteries. My work has attempted to provide metrics that could increase the positive predictive value of coronary CTA through the use of dual energy CTA imaging. After

Coronary computed tomography angiography (CTA) has a high negative predictive value for ruling out coronary artery disease with non-invasive evaluation of the coronary arteries. My work has attempted to provide metrics that could increase the positive predictive value of coronary CTA through the use of dual energy CTA imaging. After developing an algorithm for obtaining calcium scores from a CTA exam, a dual energy CTA exam was performed on patients at dose levels equivalent to levels for single energy CTA with a calcium scoring exam. Calcium Agatston scores obtained from the dual energy CTA exam were within ±11% of scores obtained with conventional calcium scoring exams. In the presence of highly attenuating coronary calcium plaques, the virtual non-calcium images obtained with dual energy CTA were able to successfully measure percent coronary stenosis within 5% of known stenosis values, which is not possible with single energy CTA images due to the presence of the calcium blooming artifact. After fabricating an anthropomorphic beating heart phantom with coronary plaques, characterization of soft plaque vulnerability to rupture or erosion was demonstrated with measurements of the distance from soft plaque to aortic ostium, percent stenosis, and percent lipid volume in soft plaque. A classification model was developed, with training data from the beating heart phantom and plaques, which utilized support vector machines to classify coronary soft plaque pixels as lipid or fibrous. Lipid versus fibrous classification with single energy CTA images exhibited a 17% error while dual energy CTA images in the classification model developed here only exhibited a 4% error. Combining the calcium blooming correction and the percent lipid volume methods developed in this work will provide physicians with metrics for increasing the positive predictive value of coronary CTA as well as expanding the use of coronary CTA to patients with highly attenuating calcium plaques.
ContributorsBoltz, Thomas (Author) / Frakes, David (Thesis advisor) / Towe, Bruce (Committee member) / Kodibagkar, Vikram (Committee member) / Pavlicek, William (Committee member) / Bouman, Charles (Committee member) / Arizona State University (Publisher)
Created2013
151433-Thumbnail Image.png
Description
Sensitivity is a fundamental challenge for in vivo molecular magnetic resonance imaging (MRI). Here, I improve the sensitivity of metal nanoparticle contrast agents by strategically incorporating pure and doped metal oxides in the nanoparticle core, forming a soluble, monodisperse, contrast agent with adjustable T2 or T1 relaxivity (r2 or r1).

Sensitivity is a fundamental challenge for in vivo molecular magnetic resonance imaging (MRI). Here, I improve the sensitivity of metal nanoparticle contrast agents by strategically incorporating pure and doped metal oxides in the nanoparticle core, forming a soluble, monodisperse, contrast agent with adjustable T2 or T1 relaxivity (r2 or r1). I first developed a simplified technique to incorporate iron oxides in apoferritin to form "magnetoferritin" for nM-level detection with T2- and T2* weighting. I then explored whether the crystal could be chemically modified to form a particle with high r1. I first adsorbed Mn2+ ions to metal binding sites in the apoferritin pores. The strategic placement of metal ions near sites of water exchange and within the crystal oxide enhance r1, suggesting a mechanism for increasing relaxivity in porous nanoparticle agents. However, the Mn2+ addition was only possible when the particle was simultaneously filled with an iron oxide, resulting in a particle with a high r1 but also a high r2 and making them undetectable with conventional T1-weighting techniques. To solve this problem and decrease the particle r2 for more sensitive detection, I chemically doped the nanoparticles with tungsten to form a disordered W-Fe oxide composite in the apoferritin core. This configuration formed a particle with a r1 of 4,870mM-1s-1 and r2 of 9,076mM-1s-1. These relaxivities allowed the detection of concentrations ranging from 20nM - 400nM in vivo, both passively injected and targeted to the kidney glomerulus. I further developed an MRI acquisition technique to distinguish particles based on r2/r1, and show that three nanoparticles of similar size can be distinguished in vitro and in vivo with MRI. This work forms the basis for a new, highly flexible inorganic approach to design nanoparticle contrast agents for molecular MRI.
ContributorsClavijo Jordan, Maria Veronica (Author) / Bennett, Kevin M (Thesis advisor) / Kodibagkar, Vikram (Committee member) / Sherry, A Dean (Committee member) / Wang, Xiao (Committee member) / Yarger, Jeffery (Committee member) / Arizona State University (Publisher)
Created2012
151453-Thumbnail Image.png
Description
Ionizing radiation, such as gamma rays and X-rays, are becoming more widely used. These high-energy forms of electromagnetic radiation are present in nuclear energy, astrophysics, and the medical field. As more and more people have the opportunity to be exposed to ionizing radiation, the necessity for coming up with simple

Ionizing radiation, such as gamma rays and X-rays, are becoming more widely used. These high-energy forms of electromagnetic radiation are present in nuclear energy, astrophysics, and the medical field. As more and more people have the opportunity to be exposed to ionizing radiation, the necessity for coming up with simple and quick methods of radiation detection is increasing. In this work, two systems were explored for their ability to simply detect ionizing radiation. Gold nanoparticles were formed via radiolysis of water in the presence of Elastin-like polypeptides (ELPs) and also in the presence of cationic polymers. Gold nanoparticle formation is an indicator of the presence of radiation. The system with ELP was split into two subsystems: those samples including isopropyl alcohol (IPA) and acetone, and those without IPA and acetone. The samples were exposed to certain radiation doses and gold nanoparticles were formed. Gold nanoparticle formation was deemed to have occurred when the sample changed color from light yellow to a red or purple color. Nanoparticle formation was also checked by absorbance measurements. In the cationic polymer system, gold nanoparticles were also formed after exposing the experimental system to certain radiation doses. Unique to the polymer system was the ability of some of the cationic polymers to form gold nanoparticles without the samples being irradiated. Future work to be done on this project is further characterization of the gold nanoparticles formed by both systems.
ContributorsWalker, Candace (Author) / Rege, Kaushal (Thesis advisor) / Chang, John (Committee member) / Kodibagkar, Vikram (Committee member) / Potta, Thrimoorthy (Committee member) / Arizona State University (Publisher)
Created2012
136066-Thumbnail Image.png
Description
Contrast agents in medical imaging can help visualize structural details, distributions of particular cell types, or local environment characteristics. Multi-modal imaging techniques have become increasingly popular for their improved sensitivity, resolution, and ability to correlate structural and functional information. This study addresses the development of dual-modality (magnetic resonance/fluorescence) and dual-functional

Contrast agents in medical imaging can help visualize structural details, distributions of particular cell types, or local environment characteristics. Multi-modal imaging techniques have become increasingly popular for their improved sensitivity, resolution, and ability to correlate structural and functional information. This study addresses the development of dual-modality (magnetic resonance/fluorescence) and dual-functional (thermometry/detection) nanoprobes for enhanced tissue imaging.
ContributorsHemzacek, Katherine Leigh (Author) / Kodibagkar, Vikram (Thesis director) / Stabenfeldt, Sarah (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2015-05
135827-Thumbnail Image.png
Description
I conducted a qualitative, comparative study on the nursing education systems in the United Kingdom and the United States, focusing on two universities—Arizona State University in Phoenix, Arizona and Leeds Beckett University in Leeds, England. The goals of my thesis included comparing the educational, economic, and cultural aspects of the

I conducted a qualitative, comparative study on the nursing education systems in the United Kingdom and the United States, focusing on two universities—Arizona State University in Phoenix, Arizona and Leeds Beckett University in Leeds, England. The goals of my thesis included comparing the educational, economic, and cultural aspects of the countries and how those aspects impact nursing students on both sides of the pond. The educational and economic aspects were compared by utilizing existing literature and open data sources such as the university websites and publications from comparative education journals, while the cultural differences were evaluated by conducting short, one-on-one interviews with students enrolled in the Adult Health courses at both universities. The findings from the interviews were transcribed and coded, and findings from the sites were compared. While there is an extensive amount of research published regarding comparative education, there has not been much published comparing these developed countries. While there is a significant difference in the structure and cost of the nursing programs, there are more similarities than differences in culture between nursing students interviewed in the US and those interviewed in the UK.
ContributorsTahiliani, Shreja (Author) / Hagler, Debra (Thesis director) / Allen, Angela (Committee member) / Arizona State University. College of Nursing & Healthcare Innovation (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
135886-Thumbnail Image.png
Description
The goal of this creative project is to explain the different roles of advanced practice nursing as well as the role of a registered nurse. Advanced practice nursing roles include Certified Nurse Practitioner, Certified Registered Nurse Anesthetist, Certified Clinical Nurse Specialist, and Certified Nurse Midwife. The role of the registered

The goal of this creative project is to explain the different roles of advanced practice nursing as well as the role of a registered nurse. Advanced practice nursing roles include Certified Nurse Practitioner, Certified Registered Nurse Anesthetist, Certified Clinical Nurse Specialist, and Certified Nurse Midwife. The role of the registered nurse is included in this website because this role is the foundation for becoming an advanced practice nurse and is an equally important role. The target audience for the website is potential nursing students, current nursing students, and licensed nurses who desire to advance their career and are looking for more information about each role. This comprehensive website includes the scope of practice, salary, educational programs, and an interview with a nurse in each role. The description of each advanced practice role includes audio and visual aids to appeal to different types of learners. In depth education regarding advanced practice nursing roles will make current and future nurses more aware of the endless possibilities of a career in nursing. Nurses provide education to patients every day, but there is rarely adequate education provided to nurses regarding their profession or professional advancement opportunities. Nursing is a patient-focused career and sometimes nurses forget to focus on their own personal growth while caring for others. This one-stop website promotes nurse to nurse education by thoroughly explaining each advanced practice role. All of the information in this website is publically available through the internet and this website is meant solely for educational purposes.
Created2015-12
135898-Thumbnail Image.png
Description
Colorectal cancer (CRC) is the third most prevalent form of cancer in both genders and second highest cause of cancer-related death in the United States. Despite the availability of preventative CRC screening, Latinos as a group are of particular concern for CRC as they tend to have a lower screening

Colorectal cancer (CRC) is the third most prevalent form of cancer in both genders and second highest cause of cancer-related death in the United States. Despite the availability of preventative CRC screening, Latinos as a group are of particular concern for CRC as they tend to have a lower screening rate, contributing to the possibility of late-stage diagnosis or even death. However, little is known about the perceptions of CRC screening and factors which contribute to beliefs about CRC in Latinos. Most studies are quantitative and rarely include a qualitative approach focusing on cultural aspects and communication with physicians. The purpose of this study was to explore participants' perceived facilitators and barriers to CRC screening, as well as perspectives on physician recommendation and fatalism, using a qualitative approach. A convenience and snowball sampling were used to collect the data. Eight English-speaking Latino individuals (M age=56 years; 75% female) in the Phoenix, Arizona area were invited to 60-90 minute in-depth interviews on perceptions of the colorectal cancer screening process. Ten major themes emerged from the interviews: (1) lacking awareness and knowledge of CRC screening, (2) attitude toward CRC and screening, (3) availability of preventive care, (4) physician trust, (5) fear, (6) desire for increased information, (7) personal learning, (8) lifestyle factors, (9) cultural impact, and (10) willingness to change lifestyle. Results indicated varying levels of perceived knowledge of colorectal cancer, little perceived risk of diagnosis, desire for more information, and a high level of physician trust. Implications for nursing included increased need for CRC screening educational resources, as well as further investigation of the influence of fatalistic belief in CRC screening compliance for the Latino population.
ContributorsMagdaleno, Claire Rose (Author) / Kim, Sunny (Thesis director) / McNulty, Julie (Committee member) / Arizona State University. College of Nursing & Healthcare Innovation (Contributor) / Barrett, The Honors College (Contributor)
Created2015-12