Matching Items (13)
Filtering by

Clear all filters

150048-Thumbnail Image.png
Description
A wireless hybrid device for detecting volatile organic compounds (VOCs) has been developed. The device combines a highly selective and sensitive tuning-fork based detector with a pre-concentrator and a separation column. The selectivity and sensitivity of the tuning-fork based detector is optimized for discrimination and quantification of benzene, toluene, ethylbenzene,

A wireless hybrid device for detecting volatile organic compounds (VOCs) has been developed. The device combines a highly selective and sensitive tuning-fork based detector with a pre-concentrator and a separation column. The selectivity and sensitivity of the tuning-fork based detector is optimized for discrimination and quantification of benzene, toluene, ethylbenzene, and xylenes (BTEX) via a homemade molecular imprinted polymer, and a specific detection and control circuit. The device is a wireless, portable, battery-powered, and cell-phone operated device. The device has been calibrated and validated in the laboratory and using selected ion flow tube mass spectrometry (SFIT-MS). The capability and robustness are also demonstrated in some field tests. It provides rapid and reliable detection of BTEX in real samples, including challenging high concentrations of interferents, and it is suitable for occupational, environmental health and epidemiological applications.
ContributorsChen, Zheng (Author) / Tao, Nongjian (Thesis advisor) / Chae, Junseok (Committee member) / Forzani, Erica (Committee member) / Arizona State University (Publisher)
Created2011
151765-Thumbnail Image.png
Description
An imaging measurement technique is developed using surface plasmon resonance. Plasmonic-based electrochemical current imaging (P-ECi) method has been developed to image the local electrochemical current optically, it allows us to measure the current density quickly and non-invasively [1, 2]. In this thesis, we solve the problems when we extand the

An imaging measurement technique is developed using surface plasmon resonance. Plasmonic-based electrochemical current imaging (P-ECi) method has been developed to image the local electrochemical current optically, it allows us to measure the current density quickly and non-invasively [1, 2]. In this thesis, we solve the problems when we extand the P-ECi technique to the field of thin film system. The P-ECi signal in thin film structure was found to be directly proportional to the electrochemical current. The upper-limit of thin film thickness to use the proportional relationship between P-ECi signal and EC current was discussed by experiment and simulation. Furthermore, a new algorithm which can calculate the current density from P-ECi signal without any thickness limitation is developed and tested. Besides, surface plasmon resonance is useful phenomenon which can be used to detect the changes in the refractive index near the gold sensing surface. With the assistance of pH indicator, by applied EC potential on the gold film as the working electrode, the detection of H2 evolution reaction can be enhanced. This measurement technique is useful in analyzing local EC information and H2 evolution. References [1] S. Wang, et al., "Electrochemical Surface Plasmon Resonance: Basic Formalism and Experimental Validation," Analytical Chemistry, vol. 82, pp. 935-941, 2010/02/01 2010. [2] X. Shan, et al., "Imaging Local Electrochemical Current via Surface Plasmon Resonance," Science, vol. 327, pp. 1363-1366, March 12, 2010 2010.
ContributorsZhao, Yanjun (Author) / Tao, Nongjian (Thesis advisor) / Wang, Shaopeng (Committee member) / Tsow, Tsing (Committee member) / Arizona State University (Publisher)
Created2013
151725-Thumbnail Image.png
Description
Woody plant encroachment is a worldwide phenomenon linked to water availability in semiarid systems. Nevertheless, the implications of woody plant encroachment on the hydrologic cycle are poorly understood, especially at the catchment scale. This study takes place in a pair of small semiarid rangeland undergoing the encroachment of Prosopis velutina

Woody plant encroachment is a worldwide phenomenon linked to water availability in semiarid systems. Nevertheless, the implications of woody plant encroachment on the hydrologic cycle are poorly understood, especially at the catchment scale. This study takes place in a pair of small semiarid rangeland undergoing the encroachment of Prosopis velutina Woot., or velvet mesquite tree. The similarly-sized basins are in close proximity, leading to equivalent meteorological and soil conditions. One basin was treated for mesquite in 1974, while the other represents the encroachment process. A sensor network was installed to measure ecohydrological states and fluxes, including precipitation, runoff, soil moisture and evapotranspiration. Observations from June 1, 2011 through September 30, 2012 are presented to describe the seasonality and spatial variability of ecohydrological conditions during the North American Monsoon (NAM). Runoff observations are linked to historical changes in runoff production in each watershed. Observations indicate that the mesquite-treated basin generates more runoff pulses and greater runoff volume for small rainfall events, while the mesquite-encroached basin generates more runoff volume for large rainfall events. A distributed hydrologic model is applied to both basins to investigate the runoff threshold processes experienced during the NAM. Vegetation in the two basins is classified into grass, mesquite, or bare soil using high-resolution imagery. Model predictions are used to investigate the vegetation controls on soil moisture, evapotranspiration, and runoff generation. The distributed model shows that grass and mesquite sites retain the highest levels of soil moisture. The model also captures the runoff generation differences between the two watersheds that have been observed over the past decade. Generally, grass sites in the mesquite-treated basin have less plant interception and evapotranspiration, leading to higher soil moisture that supports greater runoff for small rainfall events. For large rainfall events, the mesquite-encroached basin produces greater runoff due to its higher fraction of bare soil. The results of this study show that a distributed hydrologic model can be used to explain runoff threshold processes linked to woody plant encroachment at the catchment-scale and provides useful interpretations for rangeland management in semiarid areas.
ContributorsPierini, Nicole A (Author) / Vivoni, Enrique R (Thesis advisor) / Wang, Zhi-Hua (Committee member) / Mays, Larry W. (Committee member) / Arizona State University (Publisher)
Created2013
152183-Thumbnail Image.png
Description
Two critical limitations for hyperspatial imagery are higher imagery variances and large data sizes. Although object-based analyses with a multi-scale framework for diverse object sizes are the solution, more data sources and large amounts of testing at high costs are required. In this study, I used tree density segmentation as

Two critical limitations for hyperspatial imagery are higher imagery variances and large data sizes. Although object-based analyses with a multi-scale framework for diverse object sizes are the solution, more data sources and large amounts of testing at high costs are required. In this study, I used tree density segmentation as the key element of a three-level hierarchical vegetation framework for reducing those costs, and a three-step procedure was used to evaluate its effects. A two-step procedure, which involved environmental stratifications and the random walker algorithm, was used for tree density segmentation. I determined whether variation in tone and texture could be reduced within environmental strata, and whether tree density segmentations could be labeled by species associations. At the final level, two tree density segmentations were partitioned into smaller subsets using eCognition in order to label individual species or tree stands in two test areas of two tree densities, and the Z values of Moran's I were used to evaluate whether imagery objects have different mean values from near segmentations as a measure of segmentation accuracy. The two-step procedure was able to delineating tree density segments and label species types robustly, compared to previous hierarchical frameworks. However, eCognition was not able to produce detailed, reasonable image objects with optimal scale parameters for species labeling. This hierarchical vegetation framework is applicable for fine-scale, time-series vegetation mapping to develop baseline data for evaluating climate change impacts on vegetation at low cost using widely available data and a personal laptop.
ContributorsLiau, Yan-ting (Author) / Franklin, Janet (Thesis advisor) / Turner, Billie (Committee member) / Myint, Soe (Committee member) / Arizona State University (Publisher)
Created2013
150905-Thumbnail Image.png
Description
This work demonstrates the integration of a wearable particulate detector and a wireless chemical sensor into a single portable system. The detection philosophy of the chemical sensor is based on highly selective and sensitive microfabricated quartz tuning fork arrays and the particle detector detects the particulate level in real-time using

This work demonstrates the integration of a wearable particulate detector and a wireless chemical sensor into a single portable system. The detection philosophy of the chemical sensor is based on highly selective and sensitive microfabricated quartz tuning fork arrays and the particle detector detects the particulate level in real-time using a nephelometric (light scattering) approach. The device integration is realized by carefully evaluating the needs of flow rate, power and data collection. Validation test has been carried out in both laboratory and in field trials such as parking structures and highway exits with high and low traffic emissions. The integrated single portable detection system is capable of reducing the burden for a child to carry multiple devices, simplifying the task of researchers to synchronize and analyze data from different sensors, and minimizing the overall weight, size, and cost of the sensor. It also has a cell phone for data analysis, storage, and transmission as a user-friendly interface. As the chemical and particulate levels present important exposure risks that are of high interests to epidemiologists, the integrated device will provide an easier, wearable and cost effective way to monitor it.
ContributorsGao, Tianle (Author) / Tao, Nongjian (Thesis advisor) / Chae, Junseok (Committee member) / Tsow, Tsing (Committee member) / Arizona State University (Publisher)
Created2012
150596-Thumbnail Image.png
Description
Advances in miniaturized sensors and wireless technologies have enabled mobile health systems for efficient healthcare. A mobile health system assists the physician to monitor the patient's progress remotely and provide quick feedbacks and suggestions in case of emergencies, which reduces the cost of healthcare without the expense of hospitalization. This

Advances in miniaturized sensors and wireless technologies have enabled mobile health systems for efficient healthcare. A mobile health system assists the physician to monitor the patient's progress remotely and provide quick feedbacks and suggestions in case of emergencies, which reduces the cost of healthcare without the expense of hospitalization. This work involves development of an innovative mobile health system with adaptive biofeedback mechanism and demonstrates the importance of biofeedback in accurate measurements of physiological parameters to facilitate the diagnosis in mobile health systems. Resting Metabolic Rate (RMR) assessment, a key aspect in the treatment of diet related health problems is considered as a model to demonstrate the importance of adaptive biofeedback in mobile health. A breathing biofeedback mechanism has been implemented with digital signal processing techniques for real-time visual and musical guidance to accurately measure the RMR. The effects of adaptive biofeedback with musical and visual guidance were assessed on 22 healthy subjects (12 men, 10 women). Eight RMR measurements were taken for each subject on different days under same conditions. It was observed the subjects unconsciously followed breathing biofeedback, yielding consistent and accurate measurements for the diagnosis. The coefficient of variation of the measured metabolic parameters decreased significantly (p < 0.05) for 20 subjects out of 22 subjects.
ContributorsKrishnan, Ranganath (Author) / Tao, Nongjian (Thesis advisor) / Forzani, Erica (Committee member) / Yu, Hongyu (Committee member) / Arizona State University (Publisher)
Created2012
150839-Thumbnail Image.png
Description
Windows based mobile application for m-health and environmental monitoring sensor devices were developed and tested. With the number of smartphone users exponentially increasing, the applications developed for m-health and environmental monitoring devices are easy to reach the general public, if the applications are simple, user-friendly and personalized. The sensing device

Windows based mobile application for m-health and environmental monitoring sensor devices were developed and tested. With the number of smartphone users exponentially increasing, the applications developed for m-health and environmental monitoring devices are easy to reach the general public, if the applications are simple, user-friendly and personalized. The sensing device uses Bluetooth to communicate with the smartphone, providing mobility to the user. Since the device is small and hand-held, the user can put his smartphone in his pocket, connected to the device in his hand and can move anywhere with it. The data processing performed in the applications is verified against standard off the shelf software, the results of the tests are discussed in this document. The user-interface is very simple and doesn't require many inputs from the user other than during the initial setting when they have to enter their personal information for the records. The m-health application can be used by doctors as well as by patients. The response of the application is very quick and hence the patients need not wait for a long time to see the results. The environmental monitoring device has a real-time plot displayed on the screen of the smartphone showing concentrations of total volatile organic compounds and airborne particle count in the environment at the location of the device. The programming was done with Microsoft Visual Studio and was written on VB.NET platform. On the applications, the smartphone receives data as raw binary bytes from the device via Bluetooth and this data is processed to obtain the final result. The final result is the concentration of Nitric Oxide in ppb in the Asthma Analyzer device. In the environmental monitoring device, the final result is the concentration of total Volatile Organic Compounds and the count of airborne Particles.
ContributorsGanesan, Srisivapriya (Author) / Tao, Nongjian (Thesis advisor) / Zhang, Yanchao (Committee member) / Tsow, Tsing (Committee member) / Arizona State University (Publisher)
Created2012
151229-Thumbnail Image.png
Description
It has been well established that mitochondria play a critical role in the pathology of Friedreich's Ataxia. This disease is believed to be caused by a deficiency of frataxin, which research suggests is responsible for iron sulfur cluster assembly. This incomplete assembly of iron sulfur clusters is believed to be

It has been well established that mitochondria play a critical role in the pathology of Friedreich's Ataxia. This disease is believed to be caused by a deficiency of frataxin, which research suggests is responsible for iron sulfur cluster assembly. This incomplete assembly of iron sulfur clusters is believed to be linked with dysfunctional complexes in the mitochondrial respiratory chain, increased oxidative stress, and potential cell death. Increased understanding of the pathophysiology of this disease has enabled the development of various therapeutic strategies aimed at restoring mitochondrial respiration. This thesis contains an analysis of the biological activity of several classes of antioxidants against oxidative stress induced by diethyl maleate in Friedreich's Ataxia lymphocytes and CEM leukemia cells. Analogues of vitamin E α-tocopherol have been shown to protect cells under oxidative stress. However, these same analogues show various levels of inhibition towards the electron transport chain complex I. Bicyclic pyridinols containing a ten carbon substituent provided favorable cytoprotection. N-hydroxy-4-pyridone compounds were observed to provide little protection. Similarly, analogues of CoQ10 in the form of pyridinol and pyrimidinol compounds also preserved cell viability at low concentrations.
ContributorsJaruvangsanti, Jennifer (Author) / Hecht, Sidney (Thesis advisor) / Woodbury, Neal (Committee member) / Skibo, Edward (Committee member) / Arizona State University (Publisher)
Created2012
156842-Thumbnail Image.png
Description
Most drugs work by binding to receptors on the cell surface. These receptors can then carry the message into the cell and have a wide array of results. However, studying how fast the binding is can be difficult. Current methods involve extracting the receptor and labeling them, but both these

Most drugs work by binding to receptors on the cell surface. These receptors can then carry the message into the cell and have a wide array of results. However, studying how fast the binding is can be difficult. Current methods involve extracting the receptor and labeling them, but both these steps have issues. Previous works found that binding on the cell surface is accompanied with a small change in cell size, generally an increase. They have also developed an algorithm that can track these small changes without a label using a simple bright field microscope. Here, this relationship is further explored by comparing edge tracking results to a more widely used method, surface plasmon resonance. The kinetic constants found from the two methods are in agreement. No corrections or manipulations were needed to create agreement. The Bland-Altman plots shows that the error between the two methods is about 0.009 s-1. This is about the same error between cells, making it a non-dominant source of error.
ContributorsHunt, Ashley (Author) / Tao, Nongjian (Thesis advisor) / Ros, Alexandra (Committee member) / Borges, Chad (Committee member) / Arizona State University (Publisher)
Created2018
156753-Thumbnail Image.png
Description
Safe, readily available, and reliable sources of water are an essential component of any municipality’s infrastructure. Phoenix, Arizona, a southwestern city, has among the highest per capita water use in the United States, making it essential to carefully manage its reservoirs. Generally, municipal water bodies are monitored through field sampling.

Safe, readily available, and reliable sources of water are an essential component of any municipality’s infrastructure. Phoenix, Arizona, a southwestern city, has among the highest per capita water use in the United States, making it essential to carefully manage its reservoirs. Generally, municipal water bodies are monitored through field sampling. However, this approach is limited spatially and temporally in addition to being costly. In this study, the application of remotely sensed reflectance data from Landsat 7’s Enhanced Thematic Mapper Plus (ETM+) and Landsat 8’s Operational Land Imager (OLI) along with data generated through field-sampling is used to gain a better understanding of the seasonal development of algal communities and levels of suspended particulates in the three main terminal reservoirs supplying water to the Phoenix metro area: Bartlett Lake, Lake Pleasant, and Saguaro Lake. Algal abundances, particularly the abundance of filamentous cyanobacteria, increased with warmer temperatures in all three reservoirs and reached the highest comparative abundance in Bartlett Lake. Prymnesiophytes (the class of algae to which the toxin-producing golden algae belong) tended to peak between June and August, with one notable peak occurring in Saguaro Lake in August 2017 during which time a fish-kill was observed. In the cooler months algal abundance was comparatively lower in all three lakes, with a more even distribution of abundance across algae classes. In-situ data from March 2017 to March 2018 were compared with algal communities sampled approximately ten years ago in each reservoir to understand any possible long-term changes. The findings show that the algal communities in the reservoirs are relatively stable, particularly those of the filamentous cyanobacteria, chlorophytes, and prymnesiophytes with some notable exceptions, such as the abundance of diatoms, which increased in Bartlett Lake and Lake Pleasant. When in-situ data were compared with Landsat-derived reflectance data, two-band combinations were found to be the best-estimators of chlorophyll-a concentration (as a proxy for algal biomass) and total suspended sediment concentration. The ratio of the reflectance value of the red band and the blue band produced reasonable estimates for the in-situ parameters in Bartlett Lake. The ratio of the reflectance value of the green band and the blue band produced reasonable estimates for the in-situ parameters in Saguaro Lake. However, even the best performing two-band algorithm did not produce any significant correlation between reflectance and in-situ data in Lake Pleasant. Overall, remotely-sensed observations can significantly improve our understanding of the water quality as measured by algae abundance and particulate loading in Arizona Reservoirs, especially when applied over long timescales.
ContributorsRussell, Jazmine Barkley (Author) / Neuer, Susanne (Thesis advisor) / Fox, Peter (Committee member) / Myint, Soe (Committee member) / Arizona State University (Publisher)
Created2018