Matching Items (8)
Filtering by

Clear all filters

151601-Thumbnail Image.png
Description
The use of petroleum for liquid-transportation fuels has strained the environment and caused the global crude oil reserves to diminish. Therefore, there exists a need to replace petroleum as the primary fuel derivative. Butanol is a four-carbon alcohol that can be used to effectively replace gasoline without changing the current

The use of petroleum for liquid-transportation fuels has strained the environment and caused the global crude oil reserves to diminish. Therefore, there exists a need to replace petroleum as the primary fuel derivative. Butanol is a four-carbon alcohol that can be used to effectively replace gasoline without changing the current automotive infrastructure. Additionally, butanol offers the same environmentally friendly effects as ethanol, but possess a 23% higher energy density. Clostridium acetobutylicum is an anaerobic bacterium that can ferment renewable biomass-derived sugars into butanol. However, this fermentation becomes limited by relatively low butanol concentrations (1.3% w/v), making this process uneconomical. To economically produce butanol, the in-situ product removal (ISPR) strategy is employed to the butanol fermentation. ISPR entails the removal of butanol as it is produced, effectively avoiding the toxicity limit and allowing for increased overall butanol production. This thesis explores the application of ISPR through integration of expanded-bed adsorption (EBA) with the C. acetobutylicum butanol fermentations. The goal is to enhance volumetric productivity and to develop a semi-continuous biofuel production process. The hydrophobic polymer resin adsorbent Dowex Optipore L-493 was characterized in cell-free studies to determine the impact of adsorbent mass and circulation rate on butanol loading capacity and removal rate. Additionally, the EBA column was optimized to use a superficial velocity of 9.5 cm/min and a resin fraction of 50 g/L. When EBA was applied to a fed-batch butanol fermentation performed under optimal operating conditions, a total of 25.5 g butanol was produced in 120 h, corresponding to an average yield on glucose of 18.6%. At this level, integration of EBA for in situ butanol recovered enabled the production of 33% more butanol than the control fermentation. These results are very promising for the production of butanol as a biofuel. Future work will entail the optimization of the fed-batch process for higher glucose utilization and development of a reliable butanol recovery system from the resin.
ContributorsWiehn, Michael (Author) / Nielsen, David (Thesis advisor) / Lin, Jerry (Committee member) / Lind, Mary Laura (Committee member) / Arizona State University (Publisher)
Created2013
149446-Thumbnail Image.png
Description
Amine-modified solid sorbents and membrane separation are promising technologies for separation and capture of carbon dioxide (CO2) from combustion flue gas. Amine absorption processes are mature, but still have room for improvement. This work focused on the synthesis of amine-modified aerogels and metal-organic framework-5 (MOF-5) membranes for CO2 separation. A

Amine-modified solid sorbents and membrane separation are promising technologies for separation and capture of carbon dioxide (CO2) from combustion flue gas. Amine absorption processes are mature, but still have room for improvement. This work focused on the synthesis of amine-modified aerogels and metal-organic framework-5 (MOF-5) membranes for CO2 separation. A series of solid sorbents were synthesized by functionalizing amines on the surface of silica aerogels. This was done by three coating methods: physical adsorption, magnetically assisted impact coating (MAIC) and atomic layer deposition (ALD). CO2 adsorption capacity of the sorbents was measured at room temperature in a Cahn microbalance. The sorbents synthesized by physical adsorption show the largest CO2 adsorption capacity (1.43-1.63 mmol CO2/g). An additional sorbent synthesized by ALD on hydrophilic aerogels at atmospheric pressures shows an adsorption capacity of 1.23 mmol CO2/g. Studies on one amine-modified sorbent show that the powder is of agglomerate bubbling fluidization (ABF) type. The powder is difficult to fluidize and has limited bed expansion. The ultimate goal is to configure the amine-modified sorbents in a micro-jet assisted gas fluidized bed to conduct adsorption studies. MOF-5 membranes were synthesized on α-alumina supports by two methods: in situ synthesis and secondary growth synthesis. Characterization by scanning electron microscope (SEM) imaging and X-ray diffraction (XRD) show that the membranes prepared by both methods have a thickness of 14-16 μm, and a MOF-5 crystal size of 15-25 μm with no apparent orientation. Single gas permeation results indicate that the gas transport through both membranes is determined by a combination of Knudsen diffusion and viscous flow. The contribution of viscous flow indicates that the membranes have defects.
ContributorsRosa, Teresa M (Author) / Lin, Jerry (Thesis advisor) / Pfeffer, Robert (Thesis advisor) / Dai, Lenore (Committee member) / Nielsen, David (Committee member) / Arizona State University (Publisher)
Created2010
190760-Thumbnail Image.png
Description
This study deals with various flow field designs for anode, cathode, and coolant plates for optimizing the performance of proton exchange membrane fuel cell using H2 and air. In particular, the 3D models with various flow field patterns such as single parallel serpentine (anode), multi parallel (anode), multi-parallel serpentine (cathode),

This study deals with various flow field designs for anode, cathode, and coolant plates for optimizing the performance of proton exchange membrane fuel cell using H2 and air. In particular, the 3D models with various flow field patterns such as single parallel serpentine (anode), multi parallel (anode), multi-parallel serpentine (cathode), multi serpentine (cathode) have been evaluated for enhancing the fuel cell performance at 60 oC, with three different coolant flow designs (mirror serpentine, multi serpentine and parallel serpentine). Both the peak power and limiting current density are considered based on the parameters such as temperature distribution, pressure distribution, reactants/species distribution and the membrane water content on the active area (50 cm2) region. It is interesting to note that the coolant channel also has a significant effect in regulating the fuel cell performance at high current densities, in addition to reactant gas flow channels. The simulated single cell with Nafion (thickness: 18 m) demonstrates a peak power density of 0.97 W.cm-2 with single parallel serpentine (anode), multi parallel serpentine (cathode) and serpentine (coolant) and 0.91 W.cm-2 with multi parallel (anode), multi serpentine (cathode), and parallel serpentine (coolant) flow field designs. The simulated fuel cell performance is also experimentally validated with four cells at 60 oC using H2 fuel and air as the oxidant.
ContributorsAhmed, Rafiq (Author) / Mada Kannan, Arunachala (Thesis advisor) / Torres, Cesar (Committee member) / Lin, Jerry (Committee member) / Arizona State University (Publisher)
Created2023
190773-Thumbnail Image.png
Description
Lithium-ion and lithium-metal batteries represent a predominant energy storage solution with the potential to address the impending global energy crisis arising from limited non-renewable resources. However, these batteries face significant safety challenges that hinder their commercialization. The conventional polymeric separators and electrolytes have poor thermal stability and fireproof properties making

Lithium-ion and lithium-metal batteries represent a predominant energy storage solution with the potential to address the impending global energy crisis arising from limited non-renewable resources. However, these batteries face significant safety challenges that hinder their commercialization. The conventional polymeric separators and electrolytes have poor thermal stability and fireproof properties making them prone to thermal runaway that causes fire hazards and explosions when the battery is subjected to extreme operating conditions. To address this issue, various materials have been investigated for their use as separators. However, polymeric, and pure inorganic material-based separators have a trade-off between safety and electrochemical performance. This is where zeolites emerge as a promising solution, offering favorable thermal and electrochemical characteristics. The zeolites are coated onto the cathode as a separator using the scalable blade coating method. These separators are non-flammable with high thermal stability and electrolyte wettability. Furthermore, the presence of intracrystalline pores helps in homogenizing the Li-ion flux at anode resulting in improved electrochemical performance. This research delves into the preparation of zeolite separators using a commercial zeolite and lab-scale zeolite to study their safety and electrochemical performance in lithium-ion batteries. At low C-rates, both zeolites exhibited excellent capacity retention and capacity density displaying their potential to advance high-performance safe lithium-ion batteries. The commercial zeolite has demonstrated remarkable capacity retention and good performance in terms of charge and discharge cycles, as well as stability. This makes it a valuable resource for the scaling up of electrode-coated separator technology. Furthermore, the previous study demonstrated the superior electrochemical performance of plate silicalite separator (also a lab-made zeolite) with both lithium-ion and lithium-metal batteries. However, the process of scaling up and achieving precise control over plate silicalite particle size, and morphology using the existing synthesis procedure has proven challenging. Thus, the modification of process conditions is studied to enhance control over particle size, aspect ratio, and yield to facilitate a more efficient scaling-up process. Incorporation of stirring during the crystallization phase enhanced yield and uniformity of particle size. Also, the increase in temperature and time of crystallization enlarged the particles but did not show any significant improvement in the aspect ratio of the particles.
ContributorsNalam, Ramasai Dharani Harika (Author) / Lin, Jerry (Thesis advisor) / Emady, Heather (Committee member) / Seo, S. Eileen (Committee member) / Arizona State University (Publisher)
Created2023
171686-Thumbnail Image.png
Description
Lithium-ion batteries are widely used for high energy storage systems and most of the commercially manufactured lithium-ion batteries use liquid electrolytes and polymeric separators. However, these electrolytes and polymeric separators pose safety issues under high temperatures and in the event of short circuit which may lead to thermal runaway and

Lithium-ion batteries are widely used for high energy storage systems and most of the commercially manufactured lithium-ion batteries use liquid electrolytes and polymeric separators. However, these electrolytes and polymeric separators pose safety issues under high temperatures and in the event of short circuit which may lead to thermal runaway and cause fire. The application of fire-retardant high salt concentrated electrolytes can be used to address the safety issues that arises in the use of liquid electrolytes, but these electrolytes have high viscosity and low wettability when used on polymeric separators which are commercially used in lithium-ion batteries. To address this issue, zeolite powder has been synthesized and separators were prepared by coating on the electrode using scalable blade coating method. Zeolite separators have higher wettability and electrolyte uptake compared to polymeric separators such as polypropylene (PP) due to their intra-particle micropores. The zeolite separators also have higher porosity compared to PP separators resulting in higher electrolyte uptake and better electrochemical performance of the lithium-ion batteries. Zeolite separators have been prepared using spherical-silicalite and plate-silicalite to analyze the effect of morphology of the particles on the electrochemical performance of the cells. The platesilicalite separators have higher capacity retention during long-term cycling at low Crates and better capacity performance at high C-rates compared to spherical-silicalite. Therefore plate-silicalite is very promising for the development of high-performance safe lithium-ion batteries.
ContributorsLINGAM MURALI, DHEERAJ RAM (Author) / Lin, Jerry (Thesis advisor) / Muhich, Christopher (Committee member) / Torres, Cesar (Committee member) / Arizona State University (Publisher)
Created2022
187299-Thumbnail Image.png
Description
Adsorption is fundamentally known to be a non-isothermal process; in which temperature increase is largely significant, causing fairly appreciable impacts on the processkinetics. For porous adsorbent particles like metal organic frameworks (MOFs), silica gel, and zeolite, the resultant relative heat generated is partly distributed within the particle, and the rest is transferred

Adsorption is fundamentally known to be a non-isothermal process; in which temperature increase is largely significant, causing fairly appreciable impacts on the processkinetics. For porous adsorbent particles like metal organic frameworks (MOFs), silica gel, and zeolite, the resultant relative heat generated is partly distributed within the particle, and the rest is transferred to the surrounding ambient fluid (air). For large step changes in adsorbed phase concentration and fast adsorption rates, especially, the isothermality of adsorption (as in some studies) is an inadequate assumption and inspires rather erroneous diffusivities of porous adsorbents. Isothermal models, in consequence, are insufficient for studying adsorption in porous adsorbents. Non-isothermal models can satisfactorily and exhaustively describe adsorption in porous adsorbents. However, in many of the analyses done using the models, the thermal conductivity of the adsorbent is assumed to be infinite; thus, particle temperature is taken to be fairly uniform during the process—a trend not observed for carbon dioxide (CO2) adsorption on MOFs. A new and detailed analysis of CO2 adsorption in a single microporous MOF-5 particle, assuming a finite effective thermal conductivity along with comprehensive parametric studies for the models, is presented herein. A significant average temperature increase of 5K was calculated using the new model, compared to the 0.7K obtained using the Stremming model. A corresponding increase in diffusivity from 8.17 x 10-13 to 1.72 x 10-11 m2/s was observed, indicating the limitations of both isothermal models and models that assume constant diffusivity.
ContributorsNkuutu, John (Author) / Lin, Jerry (Thesis advisor) / Emady, Heather (Committee member) / Deng, Shuguang (Committee member) / Arizona State University (Publisher)
Created2023
193679-Thumbnail Image.png
Description
Covalent organic frameworks (COFs) are a recently discovered class of nanoporous polymeric materials with ultra-high specific surface areas, which makes them highly attractive for applications in nanofiltration, gas capture and storage, and catalysis. However, the macroscopic morphology of COFs is maintained by relatively weak physical interactions between crystallites, which limits

Covalent organic frameworks (COFs) are a recently discovered class of nanoporous polymeric materials with ultra-high specific surface areas, which makes them highly attractive for applications in nanofiltration, gas capture and storage, and catalysis. However, the macroscopic morphology of COFs is maintained by relatively weak physical interactions between crystallites, which limits the applications of COFs where they may experience significant physical stresses. Herein, fillers are added to three-dimensional TAPB-PDA COF aerogels synthesized to improve the mechanical strength and functionality through the formation of a composite material by physically implanting the fillers in the macropores present in the gel network. Boron nitride loading is shown to double the Young’s modulus of the aerogel, from 11 kPa to 22 kPa, at 20 relative weight percent loading, while only causing a 10% decrease in accessible nanoporous surface area, normalized to the mass of COF in the sample. Poly(acrylic acid) added at 5 relative weight percent loading and crosslinked increases the Young’s modulus to 21 kPa and simultaneously increases the elastic limit of the aerogel from 10% to 65% strain, while inducing a 38% decrease in accessible nanoporous surface area, normalized to the mass of COF in the sample. This work demonstrates the potential for macroscopic composites with COFs forming the majority phase of the material, showing the possibility for mechanical reinforcement without significant hinderance of the adsorbent functionality of the material.
ContributorsRidenour, Brian David (Author) / Jin, Kailong (Thesis advisor) / Lin, Jerry (Committee member) / Yang, Sui (Committee member) / Arizona State University (Publisher)
Created2024
153013-Thumbnail Image.png
Description
Pervaporation is a membrane separation technology that has had industrial application and which is the subject of ongoing research. Two major factors are important in judging the quality of a membrane: selectivity and permeation flux. Although many types of materials can be used for the separation layer, zeolites will be

Pervaporation is a membrane separation technology that has had industrial application and which is the subject of ongoing research. Two major factors are important in judging the quality of a membrane: selectivity and permeation flux. Although many types of materials can be used for the separation layer, zeolites will be the material considered in this thesis. A simple mathematical model has been developed to demonstrate the inter-relationships between relative permeation flux, reduced selectivity, and the relative resistance to mass transfer of the support to the zeolite layer. The model was applied to several membranes from our laboratory and to two examples from the literature. The model offers a useful way of conceptualizing membrane performance and facilitates the comparison of different membrane performances. The model predicts the effect of different supports on zeolite supported membrane performance.
ContributorsMann, Stewart (Author) / Lin, Jerry (Thesis advisor) / Lind, Mary Laura (Committee member) / Nielsen, David (Committee member) / Arizona State University (Publisher)
Created2014