Matching Items (8)
Filtering by

Clear all filters

151901-Thumbnail Image.png
Description
ABSTRACT 1. Aposematic signals advertise prey distastefulness or metabolic unprofitability to potential predators and have evolved independently in many prey groups over the course of evolutionary history as a means of protection from predation. Most aposematic signals investigated to date exhibit highly chromatic patterning; however, relatives in these toxic groups

ABSTRACT 1. Aposematic signals advertise prey distastefulness or metabolic unprofitability to potential predators and have evolved independently in many prey groups over the course of evolutionary history as a means of protection from predation. Most aposematic signals investigated to date exhibit highly chromatic patterning; however, relatives in these toxic groups with patterns of very low chroma have been largely overlooked. 2. We propose that bright displays with low chroma arose in toxic prey species because they were more effective at deterring predation than were their chromatic counterparts, especially when viewed in relatively low light environments such as forest understories. 3. We analyzed the reflectance and radiance of color patches on the wings of 90 tropical butterfly species that belong to groups with documented toxicity that vary in their habitat preferences to test this prediction: Warning signal chroma and perceived chromaticity are expected to be higher and brightness lower in species that fly in open environments when compared to those that fly in forested environments. 4. Analyses of the reflectance and radiance of warning color patches and predator visual modeling support this prediction. Moreover, phylogenetic tests, which correct for statistical non-independence due to phylogenetic relatedness of test species, also support the hypothesis of an evolutionary correlation between perceived chromaticity of aposematic signals and the flight habits of the butterflies that exhibit these signals.
ContributorsDouglas, Jonathan Marion (Author) / Rutowski, Ronald L (Thesis advisor) / Gadau, Juergen (Committee member) / McGraw, Kevin J. (Committee member) / Arizona State University (Publisher)
Created2013
152309-Thumbnail Image.png
Description
Vertebrate genomes demonstrate a remarkable range of sizes from 0.3 to 133 gigabase pairs. The proliferation of repeat elements are a major genomic expansion. In particular, long interspersed nuclear elements (LINES) are autonomous retrotransposons that have the ability to "cut and paste" themselves into a host genome through a mechanism

Vertebrate genomes demonstrate a remarkable range of sizes from 0.3 to 133 gigabase pairs. The proliferation of repeat elements are a major genomic expansion. In particular, long interspersed nuclear elements (LINES) are autonomous retrotransposons that have the ability to "cut and paste" themselves into a host genome through a mechanism called target-primed reverse transcription. LINES have been called "junk DNA," "viral DNA," and "selfish" DNA, and were once thought to be parasitic elements. However, LINES, which diversified before the emergence of many early vertebrates, has strongly shaped the evolution of eukaryotic genomes. This thesis will evaluate LINE abundance, diversity and activity in four anole lizards. An intrageneric analysis will be conducted using comparative phylogenetics and bioinformatics. Comparisons within the Anolis genus, which derives from a single lineage of an adaptive radiation, will be conducted to explore the relationship between LINE retrotransposon activity and causal changes in genomic size and composition.
ContributorsMay, Catherine (Author) / Kusumi, Kenro (Thesis advisor) / Gadau, Juergen (Committee member) / Rawls, Jeffery A (Committee member) / Arizona State University (Publisher)
Created2013
150916-Thumbnail Image.png
Description
Gene-centric theories of evolution by natural selection have been popularized and remain generally accepted in both scientific and public paradigms. While gene-centrism is certainly parsimonious, its explanations fall short of describing two patterns of evolutionary and social phenomena: the evolution of sex and the evolution of social altruism. I review

Gene-centric theories of evolution by natural selection have been popularized and remain generally accepted in both scientific and public paradigms. While gene-centrism is certainly parsimonious, its explanations fall short of describing two patterns of evolutionary and social phenomena: the evolution of sex and the evolution of social altruism. I review and analyze current theories on the evolution of sex. I then introduce the conflict presented to gene-centric evolution by social phenomena such as altruism and caste sterility in eusocial insects. I review gene-centric models of inclusive fitness and kin selection proposed by Hamilton and Maynard Smith. Based their assumptions, that relatedness should be equal between sterile workers and reproductives, I present several empirical examples that conflict with their models. Following that, I introduce a unique system of genetic caste determination (GCD) observed in hybrid populations of two sister-species of seed harvester ants, Pogonomyrmex rugosus and Pogonomyrmex barbatus. I review the evidence for GCD in those species, followed by a critique of the current gene-centric models used to explain it. In chapter two I present my own theoretical model that is both simple and extricable in nature to explain the origin, evolution, and maintenance of GCD in Pogonomyrmex. Furthermore, I use that model to fill in the gaps left behind by the contributing authors of the other GCD models. As both populations in my study system formed from inter-specific hybridization, I review modern discussions of heterosis (also called hybrid vigor) and use those to help explain the ecological competitiveness of GCD. I empirically address the inbreeding depression the lineages of GCD must overcome in order to remain ecologically stable, demonstrating that as a result of their unique system of caste determination, GCD lineages have elevated recombination frequencies. I summarize and conclude with an argument for why GCD evolved under selective mechanisms which cannot be considered gene-centric, providing evidence that natural selection can effectively operate on non-heritable genotypes appearing in groups and other social contexts.
ContributorsJacobson, Neal (Author) / Gadau, Juergen (Thesis advisor) / Laubichler, Manfred (Committee member) / Pratt, Stephen (Committee member) / Arizona State University (Publisher)
Created2012
151184-Thumbnail Image.png
Description
Here I present a phylogeographic study of at least six reproductively isolated lineages of harvester ants within the Pogonomyrmex barbatus and P. rugosus species group. The genetic and geographic relationships within this clade are complex: four of the identified lineages are divided into two pairs, and each pair has evolved

Here I present a phylogeographic study of at least six reproductively isolated lineages of harvester ants within the Pogonomyrmex barbatus and P. rugosus species group. The genetic and geographic relationships within this clade are complex: four of the identified lineages are divided into two pairs, and each pair has evolved under a mutualistic system that necessitates sympatry. These paired lineages are dependent upon one another because interlineage matings within each pair are the sole source of hybrid F1 workers; these workers build and sustain the colonies, facilitating the production of the reproductive caste, which results solely from intralineage fertilizations. This system of genetic caste determination (GCD) maintains genetic isolation among these closely related lineages, while simultaneously requiring co-expansion and emigration as their distributions have changed over time. Previous studies have also demonstrated that three of the four lineages displaying this unique genetic caste determination phenotype are of hybrid origin. Thus, reconstructing the phylogenetic and geographic history of this group allows us to evaluate past insights and plan future inquiries in a more complete historical biogeographic context. Using mitochondrial DNA sequences sampled across most of the morphospecies' ranges in the U.S. and Mexico, I employed several methods of phylogenetic and DNA sequence analysis, along with comparisons to geological, biogeographic, and phylogeographic studies throughout the sampled regions. These analyses on Pogonomyrmex harvester ants reveal a complex pattern of vicariance and dispersal that is largely concordant with models of late Miocene, Pliocene, and Pleistocene range shifts among various arid-adapted taxa in North America.
ContributorsMott, Brendon (Author) / Gadau, Juergen (Thesis advisor) / Fewell, Jennifer (Committee member) / Anderson, Kirk (Committee member) / Arizona State University (Publisher)
Created2012
156764-Thumbnail Image.png
Description
Amongst the most studied of the social insects, the honey bee has a prominent place due to its economic importance and influence on human societies. Honey bee colonies can have over 50,000 individuals, whose activities are coordinated by chemical signals called pheromones. Because these pheromones are secreted from various exocrine

Amongst the most studied of the social insects, the honey bee has a prominent place due to its economic importance and influence on human societies. Honey bee colonies can have over 50,000 individuals, whose activities are coordinated by chemical signals called pheromones. Because these pheromones are secreted from various exocrine glands, the proper development and function of these glands are vital to colony dynamics. In this thesis, I present a study of the developmental ontogeny of the exocrine glands found in the head of the honey bee. In Chapter 2, I elucidate how the larval salivary gland transitions to an adult salivary gland through apoptosis and cell growth, differentiation and migration. I also explain the development of the hypopharyngeal and the mandibular gland using apoptotic markers and cytoskeletal markers like tubulin and actin. I explain the fundamental developmental plan for the formation of the glands and show that apoptosis plays an important role in the transformation toward an adult gland.
ContributorsNath, Rachna (Author) / Gadau, Juergen (Thesis advisor) / Rawls, Alan (Committee member) / Harrison, Jon (Committee member) / Arizona State University (Publisher)
Created2018
157051-Thumbnail Image.png
Description

This study investigated the effect of environmental heat stress on physiological and performance measures during a ~4 mi time trial (TT) mountain hike in the Phoenix metropolitan area. Participants (n = 12; 7M/5F; age 21.6 ± 2.47 [SD]) climbed ‘A’ mountain (~1 mi) four times on a hot day (HOT;

This study investigated the effect of environmental heat stress on physiological and performance measures during a ~4 mi time trial (TT) mountain hike in the Phoenix metropolitan area. Participants (n = 12; 7M/5F; age 21.6 ± 2.47 [SD]) climbed ‘A’ mountain (~1 mi) four times on a hot day (HOT; wet bulb globe temperature [WBGT] = 31.6°C) and again on a moderate day (MOD; WBGT = 19.0°C). Physiological and performance measures were made before and throughout the course of each hike. Mean pre-hike hydration status (urine specific gravity [USG]) indicated that participants began both HOT and MOD trials in a euhydrated state (1.016 ± 0.010 and 1.010 ± 0.008, respectively) and means did not differ significantly between trials (p = .085). Time trial performance was impaired by -11% (11.1 minutes) in the HOT trial (105 ± 21.7 min), compared to MOD (93.9 ± 13.1 min) (p = .013). Peak core temperatures were significantly higher in HOT (38.5 ± 0.36°C) versus MOD (38.0 ± 0.30°C) with progressively increasing differences between trials over time (p < .001). Peak ratings of perceived exertion were significantly higher in HOT (14.2 ± 2.38) compared to MOD (11.9 ± 2.02) (p = .007). Relative intensity (percent of age-predicted maximal heart rate [HR]), estimated absolute intensity (metabolic equivalents [METs]), and estimated energy expenditure (MET-h) were all increased in HOT, but not significantly so. The HOT condition reduced predicted maximal aerobic capacity (CRFp) by 6% (p = .026). Sweat rates differed significantly between HOT (1.38 ± 0.53 L/h) and MOD (0.84 ± 0.27 L/h) (p = .01). Percent body mass loss (PBML) did not differ significantly between HOT (1.06 ± 0.95%) and MOD (0.98 ± 0.84%) (p = .869). All repeated measures variables showed significant between-subjects effects (p < .05), indicating individual differences in response to test conditions. Heat stress was shown to negatively affect physiological and performance measures in recreational mountain hikers. However, considerable variation exists between individuals, and the degree of physiological and performance impairment is probably due, in part, to differences in aerobic fitness and acclimatization status rather than pre- or during-performance hydration status.

ContributorsLinsell, Joshua (Author) / Wardenaar, Floris (Thesis advisor) / Berger, Christopher (Committee member) / Forzani, Erica (Committee member) / Hondula, David M. (Committee member) / Arizona State University (Publisher)
Created2019
158355-Thumbnail Image.png
Description

Exertional heat stroke continues to be one of the leading causes of illness and death in sport in the United States, with an athlete’s experienced microclimate varying by venue design and location. A limited number of studies have attempted to determine the relationship between observed wet bulb globe temperature (WBGT)

Exertional heat stroke continues to be one of the leading causes of illness and death in sport in the United States, with an athlete’s experienced microclimate varying by venue design and location. A limited number of studies have attempted to determine the relationship between observed wet bulb globe temperature (WBGT) and WBGT derived from regional weather station data. Moreover, only one study has quantified the relationship between regionally modeled and on-site measured WBGT over different athletic surfaces (natural grass, rubber track, and concrete tennis court). The current research expands on previous studies to examine how different athletic surfaces influence the thermal environment in the Phoenix Metropolitan Area using a combination of fieldwork, modeling, and statistical analysis. Meteorological data were collected from 0700–1900hr across 6 days in June and 5 days in August 2019 in Tempe, Arizona at various Sun Devil Athletics facilities. This research also explored the influence of surface temperatures on WBGT and the changes projected under a future warmer climate. Results indicate that based on American College of Sports Medicine guidelines practice would not be cancelled in June (WBGT≥32.3°C); however, in August, ~33% of practice time was lost across multiple surfaces. The second-tier recommendations (WBGT≥30.1°C) to limit intense exercise were reached an average of 7 hours each day for all surfaces in August. Further, WBGT was calculated using data from four Arizona Meteorological Network (AZMET) weather stations to provide regional WBGT values for comparison. The on-site (field/court) WBGT values were consistently higher than regional values and significantly different (p<0.05). Thus, using regionally-modeled WBGT data to guide activity or clothing modification for heat safety may lead to misclassification and unsafe conditions. Surface temperature measurements indicate a maximum temperature (170°F) occurring around solar noon, yet WBGT reached its highest level mid-afternoon and on the artificial turf surface (2–5PM). Climate projections show that WBGT values are expected to rise, further restricting the amount of practice and games than can take place outdoors during the afternoon. The findings from this study can be used to inform athletic trainers and coaches about the thermal environment through WBGT values on-field.

ContributorsGuyer, Haven Elizabeth (Author) / Vanos, Jennifer K. (Thesis advisor) / Georgescu, Matei (Thesis advisor) / Hondula, David M. (Committee member) / Arizona State University (Publisher)
Created2020
158219-Thumbnail Image.png
Description

This study aimed to investigate the effects of specific macronutrient feedings on competitive golf performance and perceived levels of fatigue and alertness. Participants played three, nine hole rounds of golf, consuming an isocaloric beverage as a control (CON), with the addition of carbohydrate (CHO), or combination of protein and carbohydrate

This study aimed to investigate the effects of specific macronutrient feedings on competitive golf performance and perceived levels of fatigue and alertness. Participants played three, nine hole rounds of golf, consuming an isocaloric beverage as a control (CON), with the addition of carbohydrate (CHO), or combination of protein and carbohydrate (COM). Physiological and performance measurements were taken before, during, and following each nine hole round. Performance measurements include driving accuracy (DA), driving distance (DD), iron accuracy (IA), chipping accuracy (CA), and putting accuracy (PA). Pre-golf hydration status (urine specific gravity [USG]) and Sweat Rate during golf performance showed no significant differences between trials. All nine hole rounds were performed in ~2 hours. Environmental conditions were similar for all three testing days (mean WBGT=10.946). No significant differences were seen in Driving Distance, Driving Accuracy, and Iron Accuracy for all nine holes between groups receiving different macronutrient feedings. Chipping Accuracy was significantly better in CON trial compared to CHO (p=0.004) and COM (p=0.019). No significant differences were seen in putting make percentages. COM trial significantly lowered Perceived Levels of Fatigue (p=0.019) compared to CON. The CHO trial showed significant improvements in DA compared to CON (13.7 vs. 44.1, p=0.012) and COM (13.7 vs. 33.6, p=0.004) in the first four holes. In the last five holes, the COM trial showed significant improvements in DA compared to CHO (17.5 vs. 29.7, p=0.007). Low Handicap golfers (3 +/- 3) performed significantly better than High Handicap golfers (14 +/- 3.6) in DD (265 vs. 241, p<0.001), DA (15.0 vs. 29.3, p=0.004), IA (15.2 vs. 25.2, p<0.001), CA (52.0 vs. 61.5, p=0.027), and PA 5ft (64% vs. 40%, p=0.003). High Handicap players showed no significant differences between the three trials for any golf performance measurements. Low Handicap players showed significant improvements in DA for COM trial compared to CON trial (13.6 vs. 27.6, p=0.003). The results suggest that carbohydrates at the start and a combination of carbohydrate and protein is beneficial at the second part of 9 holes to improve golf performance and maintain levels of fatigue, however, it needs to be investigated how this knowledge will relate to playing more holes.

ContributorsThompsett, Daniel James (Author) / Wardenaar, Floris (Thesis advisor) / Der Ananian, Cheryl (Committee member) / Hondula, David M. (Committee member) / Arizona State University (Publisher)
Created2020