Matching Items (96)
Filtering by

Clear all filters

151097-Thumbnail Image.png
Description
Power generation in remote isolated places is a tough problem. Presently, a common source for remote generation is diesel. However, diesel generation is costly and environmental unfriendly. It is promising to replace the diesel generation with some clean and economical generation sources. The concept of renewable generation offers a solution

Power generation in remote isolated places is a tough problem. Presently, a common source for remote generation is diesel. However, diesel generation is costly and environmental unfriendly. It is promising to replace the diesel generation with some clean and economical generation sources. The concept of renewable generation offers a solution to remote generation. This thesis focuses on evaluation of renewable generation penetration in the remote isolated grid. A small town named Coober Pedy in South Australia is set as an example. The first task is to build the stochastic models of solar irradiation and wind speed based on the local historical data. With the stochastic models, generation fluctuations and generation planning are further discussed. Fluctuation analysis gives an evaluation of storage unit size and costs. Generation planning aims at finding the relationships between penetration level and costs under constraint of energy sufficiency. The results of this study provide the best penetration level that makes the minimum energy costs. In the case of Coober Pedy, cases of wind and photovoltaic penetrations are studied. The additional renewable sources and suspended diesel generation change the electricity costs. Results show that in remote isolated grid, compared to diesel generation, renewable generation can lower the energy costs.
ContributorsZhu, Yujia (Author) / Holbert, Keith E. (Thesis advisor) / Karady, George G. (Committee member) / Tylavsky, Daniel J (Committee member) / Arizona State University (Publisher)
Created2012
Description
ABSTRACT This study explored the functions of dialogue in emerging adults' moral turning points. Through purposive sampling, the researcher interviewed 10 emerging adults between 25 and 30 years old about experiences of turning point conversations during the years of 18 and 25. This study employed constant comparative and grounded

ABSTRACT This study explored the functions of dialogue in emerging adults' moral turning points. Through purposive sampling, the researcher interviewed 10 emerging adults between 25 and 30 years old about experiences of turning point conversations during the years of 18 and 25. This study employed constant comparative and grounded theory methodologies to analyze messages reported in memorable conversations during this period. Results indicated that dialogue functioned to educate, disturb, and maintain emerging adults' moral perception during this period of moral reorientation. Subcategories under each included dialogue that functioned to explain, invite, warn, direct or instruct, challenge, persuade, agitate, expose, inquire, legitimize, co-reflect, redefine, and affirm or reinforce. This report cites passages from interview data to highlight how dialogic themes informed or shaped changes in moral perception. In each participant's self-reported turning point conversations there was an admixture of dialogic functions at work. Notably, participants' experience of moral turning (degree and trajectory) varied despite there being similarity in intended functions of dialogue.
ContributorsDanaher, Joshua (Author) / Waldron, Vincent R. (Thesis advisor) / Ramsey, Ramsey E (Committee member) / Kelley, Douglas L. (Committee member) / Arizona State University (Publisher)
Created2010
149345-Thumbnail Image.png
Description
Thermal modeling and investigation into heat extraction methods for building-applied photovoltaic (BAPV) systems have become important for the industry in order to predict energy production and lower the cost per kilowatt-hour (kWh) of generating electricity from these types of systems. High operating temperatures have a direct impact on the performance

Thermal modeling and investigation into heat extraction methods for building-applied photovoltaic (BAPV) systems have become important for the industry in order to predict energy production and lower the cost per kilowatt-hour (kWh) of generating electricity from these types of systems. High operating temperatures have a direct impact on the performance of BAPV systems and can reduce power output by as much as 10 to 20%. The traditional method of minimizing the operating temperature of BAPV modules has been to include a suitable air gap for ventilation between the rooftop and the modules. There has been research done at Arizona State University (ASU) which investigates the optimum air gap spacing on sufficiently spaced (2-6 inch vertical; 2-inch lateral) modules of four columns. However, the thermal modeling of a large continuous array (with multiple modules of the same type and size and at the same air gap) had yet to be done at ASU prior to this project. In addition to the air gap effect analysis, the industry is exploring different ways of extracting the heat from PV modules including hybrid photovoltaic-thermal systems (PV/T). The goal of this project was to develop a thermal model for a small residential BAPV array consisting of 12 identical polycrystalline silicon modules at an air gap of 2.5 inches from the rooftop. The thermal model coefficients are empirically derived from a simulated field test setup at ASU and are presented in this thesis. Additionally, this project investigates the effects of cooling the array with a 40-Watt exhaust fan. The fan had negligible effect on power output or efficiency for this 2.5-inch air gap array, but provided slightly lower temperatures and better temperature uniformity across the array.
ContributorsHrica, Jonathan Kyler (Author) / Tamizhmani, Govindasamy (Thesis advisor) / Rogers, Bradley (Committee member) / Macia, Narciso (Committee member) / Arizona State University (Publisher)
Created2010
149395-Thumbnail Image.png
Description
The RADiation sensitive Field Effect Transistor (RADFET) has been conventionally used to measure radiation dose levels. These dose sensors are calibrated in such a way that a shift in threshold voltage, due to a build-up of oxide-trapped charge, can be used to estimate the radiation dose. In order to estimate

The RADiation sensitive Field Effect Transistor (RADFET) has been conventionally used to measure radiation dose levels. These dose sensors are calibrated in such a way that a shift in threshold voltage, due to a build-up of oxide-trapped charge, can be used to estimate the radiation dose. In order to estimate the radiation dose level using RADFET, a wired readout circuit is necessary. Using the same principle of oxide-trapped charge build-up, but by monitoring the change in capacitance instead of threshold voltage, a wireless dose sensor can be developed. This RADiation sensitive CAPacitor (RADCAP) mounted on a resonant patch antenna can then become a wireless dose sensor. From the resonant frequency, the capacitance can be extracted which can be mapped back to estimate the radiation dose level. The capacitor acts as both radiation dose sensor and resonator element in the passive antenna loop. Since the MOS capacitor is used in passive state, characterizing various parameters that affect the radiation sensitivity is essential. Oxide processing technique, choice of insulator material, and thickness of the insulator, critically affect the dose response of the sensor. A thicker oxide improves the radiation sensitivity but reduces the dynamic range of dose levels for which the sensor can be used. The oxide processing scheme primarily determines the interface trap charge and oxide-trapped charge development; controlling this parameter is critical to building a better dose sensor.
ContributorsSrinivasan Gopalan, Madusudanan (Author) / Barnaby, Hugh (Thesis advisor) / Holbert, Keith E. (Committee member) / Yu, Hongyu (Committee member) / Arizona State University (Publisher)
Created2010
149396-Thumbnail Image.png
Description
Photovoltaic (PV) modules appear to have three classifications of failure: Infant mortality, normal-life failure, and end-of-life failure. Little is known of the end-of-life failures experienced by PV modules due to their inherent longevity. Accelerated Life Testing (ALT) has been at the crux of this lifespan prediction; however, without naturally failing

Photovoltaic (PV) modules appear to have three classifications of failure: Infant mortality, normal-life failure, and end-of-life failure. Little is known of the end-of-life failures experienced by PV modules due to their inherent longevity. Accelerated Life Testing (ALT) has been at the crux of this lifespan prediction; however, without naturally failing modules an accurate acceleration factor cannot be determined for use in ALT. By observing modules that have been aged in the field, a comparison can be made with modules undergoing accelerated testing. In this study an investigation on about 1900 aged (10-17 years) grid-tied PV modules installed in the desert climatic condition of Arizona was undertaken. The investigation was comprised of a check sheet that documented any visual defects and their severity, infrared (IR) scanning, and current-voltage (I-V) curve measurements. After data was collected on modules, an analysis was performed to classify the failure modes and to determine the annual performance degradation rates.
ContributorsSuleske, Adam Alfred (Author) / Tamizhmani, Govindasamy (Thesis advisor) / Rogers, Bradley (Committee member) / Macia, Narciso (Committee member) / Arizona State University (Publisher)
Created2010
158114-Thumbnail Image.png
Description
Suction stabilized floats have been implemented into a variety of applications such as supporting wind turbines in off-shore wind farms and for stabilizing cargo ships. This thesis proposes an alternative use for the technology in creating a system of suction stabilized floats equipped with real time location modules to hel

Suction stabilized floats have been implemented into a variety of applications such as supporting wind turbines in off-shore wind farms and for stabilizing cargo ships. This thesis proposes an alternative use for the technology in creating a system of suction stabilized floats equipped with real time location modules to help first responders establish a localized coordinate system to assist in rescues. The floats create a stabilized platform for each anchor module due to the inverse slack tank effect established by the inner water chamber. The design of the float has also been proven to be stable in most cases of amplitudes and frequencies ranging from 0 to 100 except for when the frequency ranges from 23 to 60 Hz for almost all values of the amplitude. The modules in the system form a coordinate grid based off the anchors that can track the location of a tag module within the range of the system using ultra-wideband communications. This method of location identification allows responders to use the system in GPS denied environments. The system can be accessed through an Android app with Bluetooth communications in close ranges or through internet of things (IoT) using a module as a listener, a Raspberry Pi and an internet source. The system has proven to identify the location of the tag in moderate ranges with an approximate accuracy of the tag location being 15 cm.
ContributorsDye, Michaela (Author) / Redkar, Sangram (Thesis advisor) / Sugar, Thomas (Committee member) / Rogers, Bradley (Committee member) / Arizona State University (Publisher)
Created2020
Description
The lifetime of a transformer is essentially determined by the life of its insulation

system which is a time function of the temperature defined by its thermal class. A large

quantity of studies and international standards have been published indicating the

possibility of increasing the thermal class of cellulose based materials when immersed

in

The lifetime of a transformer is essentially determined by the life of its insulation

system which is a time function of the temperature defined by its thermal class. A large

quantity of studies and international standards have been published indicating the

possibility of increasing the thermal class of cellulose based materials when immersed

in natural esters which are superior to traditional mineral oils. Thus, a transformer

having thermally upgraded Kraft paper and natural ester dielectric fluid can be

classified as a high temperature insulation system. Such a transformer can also

operate at temperatures 20C higher than its mineral oil equivalent, holding additional

loading capability without losing life expectancy. This thesis focuses on evaluating

the use of this feature as an additional capability for enhancing the loadability and/or

extending the life of the distribution transformers for the Phoenix based utility - SRP

using FR3 brand natural ester dielectric fluid.

Initially, different transformer design options to use this additional loadability

are compared allowing utilities to select an optimal FR3 filled transformer design

for their application. Yearlong load profiles for SRP distribution transformers, sized

conventionally on peak load demands, are analyzed for their oil temperatures, winding

temperatures and loss of insulation life. It is observed that these load profiles can be

classified into two types: 1) Type-1 profiles with high peak and high average loads,

and 2) Type-2 profiles with comparatively low peak and low average load.

For the Type 1 load profiles, use of FR3 natural ester fluid with the same nominal

rating showed 7.4 times longer life expectation. For the Type 2 load profiles, a new

way of sizing ester filled transformers based on both average and peak load, instead of

only peak load, called “Sustainable Peak Loading” showed smaller size transformers

can handle the same yearly peak loads while maintaining superior insulation lifespan.

It is additionally possible to have reduction in the total energy dissipation over the

year. A net present value cost savings up to US$1200 per transformer quantifying

benefits of the life extension and the total ownership cost savings up to 30% for

sustainable peak loading showed SRP distribution transformers can gain substantial

economic savings when the distribution transformer fleet is replaced with FR3 ester

filled units.
ContributorsVaidya, Chinmay Vishwas (Author) / Holbert, Keith E. (Thesis advisor) / Ayyanar, Raja (Committee member) / Pal, Anamitra (Committee member) / Arizona State University (Publisher)
Created2018
156714-Thumbnail Image.png
Description
Alternative sources of power generation interconnected at the transmission level have witnessed an increase in investment in the last few years. On the other hand, when the power systems are being operated close to their limits, power system operators and engineers face the challenge of ensuring a safe and reliable

Alternative sources of power generation interconnected at the transmission level have witnessed an increase in investment in the last few years. On the other hand, when the power systems are being operated close to their limits, power system operators and engineers face the challenge of ensuring a safe and reliable supply of electricity. In such a scenario, the reliability of the transmission system is crucial as it ensures secure transfer of uninterrupted power from the generating sources to the load centers. This thesis is aimed at ensuring the reliability of the transmission system from two perspectives. First, this work monitors power system disturbances such as unintentional islanding to ensure prompt detection and implementation of restorative actions and thus, minimizes the extent of damage. Secondly, it investigates power system disturbances such as transmission line outages through reliability evaluation and outage analysis in order to prevent reoccurrence of similar failures.

In this thesis, a passive Wide Area Measurement System (WAMS) based islanding detection scheme called Cumulative Sum of Change in Voltage Phase Angle Difference (CUSPAD) is proposed and tested on a modified 18 bus test system and a modified IEEE 118 bus system with various wind energy penetration levels. Comparative analysis between accuracies of the proposed approach and the conventional relative angle difference approach in presence of measurement errors indicate a superior performance of the former. Results obtained from the proposed approach also reveal that power system disturbances such as unintentional island formations are accurately detected in wind integrated transmission systems.

Quantitative evaluation of the transmission system reliability aids in the assessment of the existing system performance. Further, post-mortem analysis of failures is an important step in minimizing recurrent failures. Reliability evaluation and outage analysis of transmission line outages carried out in this thesis have revealed chronological trends in the system performance. A new index called Outage Impact Index (OII) is also been proposed which can identify and prioritize outages based on their severity. This would serve as a baselining index for assessing and monitoring future transmission system performances and will facilitate implementation of reliability improvement measures if found necessary.
ContributorsBarkakati, Meghna (Author) / Pal, Anamitra (Thesis advisor) / Holbert, Keith E. (Committee member) / Weng, Yang (Committee member) / Arizona State University (Publisher)
Created2018
156921-Thumbnail Image.png
Description
Transmission line parameters play an important role in state estimation, dynamic line rating, and fault analysis. Because of this, several methods have been proposed in the literature for line parameter estimation, especially using synchrophasor data. However, success of most prior research has been demonstrated using purely synthetic data. A synthetic

Transmission line parameters play an important role in state estimation, dynamic line rating, and fault analysis. Because of this, several methods have been proposed in the literature for line parameter estimation, especially using synchrophasor data. However, success of most prior research has been demonstrated using purely synthetic data. A synthetic dataset does not have the problems encountered with real data, such as invariance of measurements and realistic field noise. Therefore, the algorithms developed using synthetic datasets may not be as effective when used in practice. On the other hand, the true values of the line parameters are unknown and therefore the algorithms cannot be directly implemented on real data. A multi-stage test procedure is developed in this work to circumvent this problem.

In this thesis, two popular algorithms, namely, moving-window total least squares (MWTLS) and recursive Kalman filter (RKF) are applied on real data in multiple stages. In the first stage, the algorithms are tested on a purely synthetic dataset. This is followed by testing done on pseudo-synthetic datasets generated using real PMU data. In the final stage, the algorithms are implemented on the real PMU data obtained from a local utility. The results show that in the context of the given problem, RKF has better performance than MWTLS. Furthermore, to improve the performance of RKF on real data, ASPEN data are used to calculate the initial estimates. The estimation results show that the RKF algorithm can reliably estimate the sequence impedances, using ASPEN data as a starting condition. The estimation procedure is repeated over different time periods and the corresponding results are presented.

Finally, the significance of data drop-outs and its impact on the use of parameter estimates for real-time power system applications, such as state estimation and dynamic line rating, is discussed. To address the problem (of data drop-outs), an auto regressive integrated moving average (ARIMA) model is implemented. The ability of this model to predict the variations in sequence impedances is demonstrated.
ContributorsMansani, Prashanth Kumar (Author) / Pal, Anamitra (Thesis advisor) / Holbert, Keith E. (Committee member) / Tylavsky, Daniel (Committee member) / Arizona State University (Publisher)
Created2018
154659-Thumbnail Image.png
Description
In the past 10 to 15 years, there has been a tremendous increase in the amount of photovoltaic (PV) modules being both manufactured and installed in the field. Power plants in the hundreds of megawatts are continuously being turned online as the world turns toward greener and sustainable energy. Due

In the past 10 to 15 years, there has been a tremendous increase in the amount of photovoltaic (PV) modules being both manufactured and installed in the field. Power plants in the hundreds of megawatts are continuously being turned online as the world turns toward greener and sustainable energy. Due to this fact and to calculate LCOE (levelized cost of energy), it is understandably becoming more important to comprehend the behavior of these systems as a whole by calculating two key data: the rate at which modules are degrading in the field; the trend (linear or nonlinear) in which the degradation is occurring. As opposed to periodical in field intrusive current-voltage (I-V) measurements, non-intrusive measurements are preferable to obtain these two key data since owners do not want to lose money by turning their systems off, as well as safety and breach of installer warranty terms. In order to understand the degradation behavior of PV systems, there is a need for highly accurate performance modeling. In this thesis 39 commercial PV power plants from the hot-dry climate of Arizona are analyzed to develop an understanding on the rate and trend of degradation seen by crystalline silicon PV modules. A total of three degradation rates were calculated for each power plant based on three methods: Performance Ratio (PR), Performance Index (PI), and raw kilowatt-hour. These methods were validated from in field I-V measurements obtained by Arizona State University Photovoltaic Reliability Lab (ASU-PRL). With the use of highly accurate performance models, the generated degradation rates may be used by the system owners to claim a warranty from PV module manufactures or other responsible parties.
ContributorsRaupp, Christopher (Author) / Tamizhmani, Govindasamy (Thesis advisor) / Srinivasan, Devarajan (Committee member) / Rogers, Bradley (Committee member) / Arizona State University (Publisher)
Created2016