Matching Items (16)
Filtering by

Clear all filters

149824-Thumbnail Image.png
Description
Nicotine is thought to underlie the reinforcing and dependence-producing effects of tobacco-containing products. Nicotine supports self-administration in rodents, although measures of its reinforcing effects are often confounded by procedures that are used to facilitate acquisition, such as food restriction, prior reinforcement training, or response-contingent co-delivery of a naturally reinforcing light.

Nicotine is thought to underlie the reinforcing and dependence-producing effects of tobacco-containing products. Nicotine supports self-administration in rodents, although measures of its reinforcing effects are often confounded by procedures that are used to facilitate acquisition, such as food restriction, prior reinforcement training, or response-contingent co-delivery of a naturally reinforcing light. This study examined whether rats acquire nicotine self-administration in the absence of these facilitators. A new mathematical modeling procedure was used to define the criterion for acquisition and to determine dose-dependent differences in rate and asymptote levels of intake. Rats were trained across 20 daily 2-h sessions occurring 6 days/week in chambers equipped with active and inactive levers. Each active lever press resulted in nicotine reinforcement (0, 0.015, 0.03, 0.06 mg/kg, IV) and retraction of both levers for a 20-s time out, whereas inactive lever presses had no consequences. Acquisition was defined by the best fit of a logistic function (i.e., S-shaped) versus a constant function (i.e., flat line) for reinforcers obtained across sessions using a corrected Akaike information criterion (AICc) as a model selection tool. The results showed an inverted-U shaped function for dose in relation to the percentage of animals that acquired nicotine self-administration, with 46% acquiring at 0.015 mg/kg, 73% at 0.03 mg/kg, and 58% at 0.06 mg/kg. All saline rats failed to acquire as expected. For rats that acquired nicotine self-administration, multiple model comparisons demonstrated that the asymptote (highest number of reinforcers/session) and half learning point (h; session during which half the assymptote had been achieved) were justified as free parameters of the reinforcers/session function, indicating that these parameters vary with nicotine dose. Asymptote exhibited an inverted U-shaped function across doses and half learning point exhibited a negative relationship to dose (i.e., the higher the dose the fewer sessions to reach h). These findings suggest that some rats acquire nicotine self-administration without using procedures that confound measures of acquisition rate. Furthermore, the modeling approach provides a new way of defining acquisition of drug self-administration that takes advantage of using all data generated from individual subjects and is less arbitrary than some criteria that are currently used.
ContributorsCole, Natalie (Author) / Neisewander, Janet L (Thesis advisor) / Sanabria, Federico (Thesis advisor) / Bimonte-Nelson, Heather A. (Committee member) / Olive, Michael F (Committee member) / Arizona State University (Publisher)
Created2011
149837-Thumbnail Image.png
Description
The failure to withhold inappropriate behavior is a central component of most impulse control disorders, including Attention Deficit Hyperactivity Disorder (ADHD). The present study examined the effects of housing environment and methylphenidate (a drug often prescribed for ADHD) on the performance of rats in two response inhibition tasks: differential reinforcement

The failure to withhold inappropriate behavior is a central component of most impulse control disorders, including Attention Deficit Hyperactivity Disorder (ADHD). The present study examined the effects of housing environment and methylphenidate (a drug often prescribed for ADHD) on the performance of rats in two response inhibition tasks: differential reinforcement of low rate (DRL) and fixed minimum interval (FMI). Both tasks required rats to wait a fixed amount of time (6 s) before emitting a reinforced response. The capacity to withhold the target response (volitional inhibition) and timing precision were estimated on the basis of performance in each of the tasks. Paradoxically, rats housed in a mildly enriched environment that included a conspecific displayed less volitional inhibition in both tasks compared to rats housed in an isolated environment. Enriched housing, however, increased timing precision. Acute administration of methylphenidate partially reversed the effects of enriched housing. Implications of these results in the assessment and treatment of ADHD-related impulsivity are discussed.
ContributorsHill, Jade C (Author) / Sanabria, Federico (Thesis advisor) / Killeen, Peter (Committee member) / Neisewander, Janet (Committee member) / Arizona State University (Publisher)
Created2011
152072-Thumbnail Image.png
Description
When a rolling ball exits a spiral tube, it typically maintains its final inertial state and travels along straight line in concordance with Newton's first law of motion. Yet, most people predict that the ball will curve, a "naive physics" misconception called the curvilinear impetus (CI) bias. In the current

When a rolling ball exits a spiral tube, it typically maintains its final inertial state and travels along straight line in concordance with Newton's first law of motion. Yet, most people predict that the ball will curve, a "naive physics" misconception called the curvilinear impetus (CI) bias. In the current paper, we explore the ecological hypothesis that the CI bias arises from overgeneralization of correct motion of biological agents. Previous research has established that humans curve when exiting a spiral maze, and college students believe this motion is the same for balls and humans. The current paper consists of two follow up experiments. The first experiment tested the exiting behavior of rodents from a spiral rat maze. Though there were weaknesses in design and procedures of the maze, the findings support that rats do not behave like humans who exhibit the CI bias when exiting a spiral maze. These results are consistent with the CI bias being an overgeneralization of human motion, rather than generic biological motion. The second experiment tested physics teachers on their conception of how a humans and balls behave when exiting a spiral tube. Teachers demonstrated correct knowledge of the straight trajectory of a ball, but generalized the ball's behavior to human motion. Thus physics teachers exhibit the opposite bias from college students and presume that all motion is like inanimate motion. This evidence supports that this type of naive physics inertial bias is at least partly due to participants overgeneralizing both inanimate and animate motion to be the same, perhaps in an effort to minimize cognitive reference memory load. In short, physics training appears not to eliminate the bias, but rather to simply shift it from the presumption of stereotypical animate to stereotypical inanimate behavior.
ContributorsDye, Rosaline (Author) / Mcbeath, Michael K (Thesis advisor) / Sanabria, Federico (Committee member) / Megowan, Colleen (Committee member) / Arizona State University (Publisher)
Created2013
150589-Thumbnail Image.png
Description
The capability of cocaine-associated stimuli in eliciting craving in human addicts, even after extended periods of abstinence, is modeled in animals using cue reinstatement of extinguished cocaine-seeking behavior. This study aimed to examine brain activation in response to cocaine cues in this model apart from activation produced by test novelty

The capability of cocaine-associated stimuli in eliciting craving in human addicts, even after extended periods of abstinence, is modeled in animals using cue reinstatement of extinguished cocaine-seeking behavior. This study aimed to examine brain activation in response to cocaine cues in this model apart from activation produced by test novelty using a novel cue control. Rats trained to self-administer cocaine paired with either an oscillating light or tone cue underwent daily extinction training and were then tested for reinstatement of extinguished cocaine-seeking behavior elicited by response-contingent presentations of either their assigned cocaine-paired cue or the alternate, novel cue. Additional controls received saline infusions and cue presentations yoked to a cocaine-trained rat. Brains were harvested for Fos immunohistochemistry immediately after the 90-min reinstatement test. Surprisingly, conditioned and novel cues both reinstated responding to a similar degree; however magnitude of reinstatement did vary by cue modality with the greatest reinstatement to the light cues. In most brain regions, Fos expression was enhanced in rats with a history of cocaine training regardless of cue type with the exception of the Cg1 region of the anterior cingulate cortex, which was sensitive to test cue modality. Also Fos expression within the dorsomedial caudate-putamen was correlated with responding in the novel, but not conditioned, cue groups. In subsequent experiments, we observed a similar pattern of reinstatement in rats trained and tested for sucrose-seeking behavior, whereas rats trained and tested with the cues only reinstated to a novel light and tone, but not a familiar cue. The results suggest that novel cues reinstate responding to a similar extent as conditioned cues regardless of whether animals have a history of operant-delivered drug or a natural reinforcer. Furthermore, similar brain circuits as those involved in cocaine-seeking behavior are activated by novel cues, suggesting converging processes exist to drive conditioned and novel reinforcement seeking.
ContributorsBastle, Ryan (Author) / Neisewander, Janet L (Thesis advisor) / Sanabria, Federico (Committee member) / Olive, Michael F (Committee member) / Arizona State University (Publisher)
Created2012
150429-Thumbnail Image.png
Description
Three experiments used a spatial serial conditioning paradigm to assess the effectiveness of spatially informative conditioned stimuli in eliciting tracking behavior in pigeons. The experimental paradigm consisted of the simultaneous presentation of 2 key lights (CS2 and CTRL), followed by another key light (CS1), followed by food (the unconditioned stimulus

Three experiments used a spatial serial conditioning paradigm to assess the effectiveness of spatially informative conditioned stimuli in eliciting tracking behavior in pigeons. The experimental paradigm consisted of the simultaneous presentation of 2 key lights (CS2 and CTRL), followed by another key light (CS1), followed by food (the unconditioned stimulus or US). CS2 and CTRL were presented in 2 of 3 possible locations, randomly assigned; CS1 was always presented in the same location as CS2. CS2 was designed to signal the spatial, but not the temporal locus of CS1; CS1 signaled the temporal locus of the US. In Experiment 1, differential pecking on CS2 was observed even when CS2 was present throughout the interval between CS1s, but only in a minority of pigeons. A control condition verified that pecking on CS2 was not due to temporal proximity between CS2 and US. Experiment 2 demonstrated the reversibility of spatial conditioning between CS2 and CTRL. Asymptotic performance never involved tracking CTRL more than CS2 for any of 16 pigeons. It is inferred that pigeons learned the spatial association between CS2 and CS1, and that temporal contingency facilitated its expression as tracking behavior. In a third experiment, with pigeons responding to a touchscreen monitor, differential responding to CS2 was observed only when CS2 disambiguated the location of a random CS1. When the presentation location of CS1 was held constant, no differences in responding to CS2 or CTRL were observed.
ContributorsMazur, Gabriela (Author) / Sanabria, Federico (Thesis advisor) / Killeen, Peter R (Committee member) / Robles-Sotelo, Elias (Committee member) / Ho Chen Cheung, Timothy (Committee member) / Arizona State University (Publisher)
Created2011
150465-Thumbnail Image.png
Description
Anxiety sensitivity (AS; the fear of anxiety-related bodily sensations) has been earmarked as a significant risk factor in the development and maintenance of pathological anxiety in adults and children. Given the potential implications of heightened AS, recent research has focused on investigating the etiology and developmental course of elevated AS;

Anxiety sensitivity (AS; the fear of anxiety-related bodily sensations) has been earmarked as a significant risk factor in the development and maintenance of pathological anxiety in adults and children. Given the potential implications of heightened AS, recent research has focused on investigating the etiology and developmental course of elevated AS; however, most of this work has been conducted with adults and is retrospective in nature. Data from college students show that early anxiety-related learning experiences may be a primary source of heightened AS levels, but it remains unclear whether AS in children is linked to their learning experiences (i.e., parental reinforcement, modeling, punishment, and/or transmission of information about anxiety-related behaviors). Based on AS theory and its iterations, an emerging theoretical model was developed to aid further exploration of the putative causes and consequences of heightened AS levels. Using a sample of 70 clinic-referred youth (ages 6 to 16 years old; 51.4% Hispanic/Latino), the present study sought to further explicate the role of learning in the development of AS and anxiety symptoms. Results suggest that childhood learning experiences may be an important precursor to heightened AS levels and, subsequently, increased experiences of anxiety symptoms. Findings also indicate that some youth may be more vulnerable to anxiety-related learning experiences and suggest that culture may play a role in the relations among learning, AS, and anxiety symptoms.
ContributorsHolly, Lindsay (Author) / Pina, Armando A (Thesis advisor) / Crnic, Keith A (Committee member) / Sanabria, Federico (Committee member) / Arizona State University (Publisher)
Created2012
193495-Thumbnail Image.png
Description
The rate at which an operant is produced has often functioned as a fundamental measure of the efficacy of a reinforcer. Previous research has shown that operant behavior is typically organized into bouts implying that rate of responding is a composite of bout-initiation rate, within-bout response rate, and mean bout

The rate at which an operant is produced has often functioned as a fundamental measure of the efficacy of a reinforcer. Previous research has shown that operant behavior is typically organized into bouts implying that rate of responding is a composite of bout-initiation rate, within-bout response rate, and mean bout length. However, it is still unclear whether this organization of behavioral responses into bouts is a product of the motivational processes or a property that arises from the location of an organism in space. To test this proximity hypothesis, two-response sequences were intermittently reinforced: either pressing one lever twice (manipulandum proximal to response termination) or pressing each of two levers, located on either side of an operant chamber, once (manipulandum distal to response termination). In Experiment 1, rats were first trained to lever press for food on a VI schedule before being exposed to the alternation paradigm. Experiment 1 consisted of three phases. In Phase 1, food-deprived rats learned the alternation paradigm under a tandem variable time (VT) 150-s fixed-ratio (FR) 1 schedule of reinforcement. Phase 2 and 3 increased the FR requirement from 1 to 3 or 5 and removed food deprivation, respectively, to examine their effect on response-rate components. In Experiment 2, rats switched between trials consisting of pressing a single lever repeatedly or alternating between two levers for reward. Following stable behavior, lever pressing was extinguished in both trial types to the effect of extinction on response-rate components. Overall, behavioral bouts persisted under the alternation paradigm suggesting that they reflect motivational states and not just location. Additionally, bout-initiation rate decreased with increased response effort and decreased deprivation. Taken together, these results provide support for the use of response-bout analysis to evaluate the value of a reinforcer and its sensitivity to pharmacological manipulations.
ContributorsGildea, Matthew (Author) / Sanabria, Federico (Thesis advisor) / Gewirtz, Jonathan (Committee member) / Verpeut, Jessica (Committee member) / Arizona State University (Publisher)
Created2024
193297-Thumbnail Image.png
Description
Autism spectrum disorder (ASD) is characterized by deficits in flexible cognition and social behavior. The most common atypical brain structure in ASD, the cerebellum, has multisynaptic connections through the cerebellar nuclei (CN) and thalamus to cognitive- and social-associated brain regions, yet formation and modulation of these pathways are not fully

Autism spectrum disorder (ASD) is characterized by deficits in flexible cognition and social behavior. The most common atypical brain structure in ASD, the cerebellum, has multisynaptic connections through the cerebellar nuclei (CN) and thalamus to cognitive- and social-associated brain regions, yet formation and modulation of these pathways are not fully understood. Additionally, a CN output mechanism, perineuronal nets (PNNs), structure and function are undefined. PNNs are specialized extracellular matrix structures whose appearance is associated with the end of the critical period of plasticity and have been implicated in learning and neurodevelopmental disorders, but their role in the CN during development is unknown.To examine the role of CN on cognition, CN activity was increased or decreased in both male and female mice using Designer Receptors Exclusively Activated by Designer Drugs (DREADDs) from postnatal day 21-35. Learning and reversal was analyzed using a pairwise visual discrimination task. Social behavior was assessed using a classic three-chamber assay and analyzed using SLEAP (Social Leap Estimates Animal Poses). A marker of critical periods, perineuronal nets (PNNs), was examined to understand relationships between neural development and behavior. Interestingly, adolescent CN disruption did not alter task acquisition, yet correct choice reversal performance was dependent on DREADD manipulation and sex. CN inhibition improved reversal learning in males (5 days faster to criteria) and CN excitation improved female reversal learning (10 days faster to criteria) compared to controls. Analysis of social behavior revealed male social preference was abolished in CN manipulated groups, whereas females failed to demonstrate a social preference. Interestingly, CN manipulation in females regardless of direction, reduced PNN intensity, whereas in males only CN inhibition reduced PNN intensity. PNN intensity negatively correlated with reversal performance. CN PNN intensity showed no relation to social behavior. These data suggest chronic adolescent CN manipulation may have compensatory changes in PNN structure and CN output to improve reversal learning and PNN function was unrelated to social behavior. This study provides new evidence for CN in non-motor functions and sex-dependent differences in behavior and CN plasticity.
ContributorsLyle, Tristan (Author) / Verpeut, Jessica (Thesis advisor) / Sanabria, Federico (Committee member) / Newbern, Jason (Committee member) / Arizona State University (Publisher)
Created2024
157357-Thumbnail Image.png
Description
Temporal bisection is a common procedure for the study of interval timing in humans and non-human animals, in which participants are trained to discriminate between a “short” and a “long” interval of time. Following stable and accurate discrimination, unreinforced probe intervals between the two values are tested. In temporal bisection

Temporal bisection is a common procedure for the study of interval timing in humans and non-human animals, in which participants are trained to discriminate between a “short” and a “long” interval of time. Following stable and accurate discrimination, unreinforced probe intervals between the two values are tested. In temporal bisection studies, intermediate non-reinforced probe intervals are typically arithmetically- or geometrically- spaced, yielding point of subjective equality at the arithmetic and geometric mean of the trained anchor intervals. Brown et al. (2005) suggest that judgement of the length of an interval, even when not reinforced, is influenced by its subjective length in comparison to that of other intervals. This hypothesis predicts that skewing the distribution of probe intervals shifts the psychophysical function relating interval length to the probability of reporting that interval as “long.” Data from the present temporal bisection study, using rats, suggest that there may be a within-session shift in temporal bisection responding which accounts for observed shifts in the psychophysical functions, and that this may also influence how rats categorize ambiguous intervals.
ContributorsGupta, Tanya A. (Author) / Sanabria, Federico (Thesis advisor) / Wynne, Clive (Committee member) / McBeath, Michael (Committee member) / Arizona State University (Publisher)
Created2019
154138-Thumbnail Image.png
Description
Theories of interval timing have largely focused on accounting for the aggregate properties of behavior engendered by periodic reinforcement, such as sigmoidal psychophysical functions and their scalar property. Many theories of timing also stipulate that timing and motivation are inseparable processes. Such a claim is challenged by fluctuations in and

Theories of interval timing have largely focused on accounting for the aggregate properties of behavior engendered by periodic reinforcement, such as sigmoidal psychophysical functions and their scalar property. Many theories of timing also stipulate that timing and motivation are inseparable processes. Such a claim is challenged by fluctuations in and out of states of schedule control, making it unclear whether motivation directly affects states related to timing. The present paper seeks to advance our understanding of timing performance by analyzing and comparing the distribution of latencies and inter-response times (IRTs) of rats in two fixed-interval (FI) schedules of food reinforcement (FI 30-s and FI 90-s), and in two levels of food deprivation. Computational modeling revealed that each component was well described by mixture probability distributions embodying two-state Markov chains. Analysis of these models revealed that only a subset of latencies are sensitive to the periodicity of reinforcement, and pre-feeding only reduces the size of this subset. The distribution of IRTs suggests that behavior in FI schedules is organized in bouts that lengthen and ramp up in frequency with proximity to reinforcement. Pre-feeding slowed down the lengthening of bouts and increased the time between bouts. When concatenated, these models adequately reproduced sigmoidal FI response functions. These findings suggest that behavior in FI fluctuates in and out of schedule control; an account of such fluctuation suggests that timing and motivation are dissociable components of FI performance. These mixture-distribution models also provide novel insights on the motivational, associative, and timing processes expressed in FI performance, which need to be accounted for by causal theories of interval timing.
ContributorsDaniels, Carter W (Author) / Sanabria, Federico (Thesis advisor) / Brewer, Gene (Committee member) / Wynne, Clive (Committee member) / Arizona State University (Publisher)
Created2015