Matching Items (10)
Filtering by

Clear all filters

149725-Thumbnail Image.png
Description
Infections caused by the Hepatitis C Virus (HCV) are very common worldwide, affecting up to 3% of the population. Chronic infection of HCV may develop into liver cirrhosis and liver cancer which is among the top five of the most common cancers. Therefore, vaccines against HCV are under intense study

Infections caused by the Hepatitis C Virus (HCV) are very common worldwide, affecting up to 3% of the population. Chronic infection of HCV may develop into liver cirrhosis and liver cancer which is among the top five of the most common cancers. Therefore, vaccines against HCV are under intense study in order to prevent HCV from harming people's health. The envelope protein 2 (E2) of HCV is thought to be a promising vaccine candidate because it can directly bind to a human cell receptor and plays a role in viral entry. However, the E2 protein production in cells is inefficient due to its complicated matured structure. Folding of E2 in the endoplasmic reticulum (ER) is often error-prone, resulting in production of aggregates and misfolded proteins. These incorrect forms of E2 are not functional because they are not able to bind to human cells and stimulate antibody response to inhibit this binding. This study is aimed to overcome the difficulties of HCV E2 production in plant system. Protein folding in the ER requires great assistance from molecular chaperones. Thus, in this study, two molecular chaperones in the ER, calreticulin and calnexin, were transiently overexpressed in plant leaves in order to facilitate E2 folding and production. Both of them showed benefits in increasing the yield of E2 and improving the quality of E2. In addition, poorly folded E2 accumulated in the ER may cause stress in the ER and trigger transcriptional activation of ER molecular chaperones. Therefore, a transcription factor involved in this pathway, named bZIP60, was also overexpressed in plant leaves, aiming at up-regulating a major family of molecular chaperones called BiP to assist protein folding. However, our results showed that BiP mRNA levels were not up-regulated by bZIP60, but they increased in response to E2 expression. The Western blot analysis also showed that overexpression of bZIP60 had a small effect on promoting E2 folding. Overall, this study suggested that increasing the level of specific ER molecular chaperones was an effective way to promote HCV E2 protein production and maturation.
ContributorsHong, Fan (Author) / Mason, Hugh (Thesis advisor) / Gaxiola, Roberto (Committee member) / Chang, Yung (Committee member) / Chen, Qiang (Committee member) / Arizona State University (Publisher)
Created2011
152348-Thumbnail Image.png
Description
Pathogenic Gram-negative bacteria employ a variety of molecular mechanisms to combat host defenses. Two-component regulatory systems (TCR systems) are the most ubiquitous signal transduction systems which regulate many genes required for virulence and survival of bacteria. In this study, I analyzed different TCR systems in two clinically-relevant Gram-negative bacteria, i.e.,

Pathogenic Gram-negative bacteria employ a variety of molecular mechanisms to combat host defenses. Two-component regulatory systems (TCR systems) are the most ubiquitous signal transduction systems which regulate many genes required for virulence and survival of bacteria. In this study, I analyzed different TCR systems in two clinically-relevant Gram-negative bacteria, i.e., oral pathogen Porphyromonas gingivalis and enterobacterial Escherichia coli. P. gingivalis is a major causative agent of periodontal disease as well as systemic illnesses, like cardiovascular disease. A microarray study found that the putative PorY-PorX TCR system controls the secretion and maturation of virulence factors, as well as loci involved in the PorSS secretion system, which secretes proteinases, i.e., gingipains, responsible for periodontal disease. Proteomic analysis (SILAC) was used to improve the microarray data, reverse-transcription PCR to verify the proteomic data, and primer extension assay to determine the promoter regions of specific PorX regulated loci. I was able to characterize multiple genetic loci regulated by this TCR system, many of which play an essential role in hemagglutination and host-cell adhesion, and likely contribute to virulence in this bacterium. Enteric Gram-negative bacteria must withstand many host defenses such as digestive enzymes, low pH, and antimicrobial peptides (AMPs). The CpxR-CpxA TCR system of E. coli has been extensively characterized and shown to be required for protection against AMPs. Most recently, this TCR system has been shown to up-regulate the rfe-rff operon which encodes genes involved in the production of enterobacterial common antigen (ECA), and confers protection against a variety of AMPs. In this study, I utilized primer extension and DNase I footprinting to determine how CpxR regulates the ECA operon. My findings suggest that CpxR modulates transcription by directly binding to the rfe promoter. Multiple genetic and biochemical approaches were used to demonstrate that specific TCR systems contribute to regulation of virulence factors and resistance to host defenses in P. gingivalis and E. coli, respectively. Understanding these genetic circuits provides insight into strategies for pathogenesis and resistance to host defenses in Gram negative bacterial pathogens. Finally, these data provide compelling potential molecular targets for therapeutics to treat P. gingivalis and E. coli infections.
ContributorsLeonetti, Cori (Author) / Shi, Yixin (Thesis advisor) / Stout, Valerie (Committee member) / Nickerson, Cheryl (Committee member) / Sandrin, Todd (Committee member) / Arizona State University (Publisher)
Created2013
161598-Thumbnail Image.png
Description
Anecdotally, native Mandarin speakers have difficulty distinguishing between the “s” (as in sink) and the “th” (as in think) sounds as well as between the “a” (as in dad) and “ea” (as in dead) sounds. Here, 29 native English speakers, 52 native Mandarin speakers who live in China, and 34

Anecdotally, native Mandarin speakers have difficulty distinguishing between the “s” (as in sink) and the “th” (as in think) sounds as well as between the “a” (as in dad) and “ea” (as in dead) sounds. Here, 29 native English speakers, 52 native Mandarin speakers who live in China, and 34 native Mandarin speakers who have been living in an English language dominant environment were recruited to serve as participants. To assess the phoneme contrasts that may occur in native Mandarin speakers in China, and possible improvement in native Mandarin speakers living in an English environment, relative to Native English speakers living in America, a phoneme discrimination test was administered, three paired phonemes were used in the current study: /b/ paired with /p/ as a control pair, /æ/ paired with /ɛ/, and /θ/ paired with /s/. The results showed that native English speakers have significantly higher accuracy rates for the three paired phoneme discrimination tasks than the native Mandarin speakers who live in China. But there was no significant difference between the native English speakers and native Mandarin speakers who have lived in an English environment on the phonemes or words discriminations tasks.
ContributorsChen, Hao (Author) / Nanez, Jose (Thesis advisor) / Horne, Zachary (Thesis advisor) / Holloway, Steven (Committee member) / Arizona State University (Publisher)
Created2021
152570-Thumbnail Image.png
Description
Current research has identified a specific type of visual experience that leads to faster cortical processing. Specifically, performance on perceptual learning of a directional-motion leads to faster cortical processing. This is important on two levels; first, cortical processing is positively correlated with cognitive functions and inversely related to age, frontal

Current research has identified a specific type of visual experience that leads to faster cortical processing. Specifically, performance on perceptual learning of a directional-motion leads to faster cortical processing. This is important on two levels; first, cortical processing is positively correlated with cognitive functions and inversely related to age, frontal lobe lesions, and some cognitive disorders. Second, temporal processing has been shown to be relatively stable over time. In order to expand on this line of research, we examined the effects of a different, but relevant visual experience (i.e., implied motion) on cortical processing. Previous fMRI studies have indicated that static images that imply motion activate area V5 or middle temporal/medial superior temporal complex (MT/MST+) of the visual cortex, the same brain region that is activated in response to real motion. Therefore, we hypothesized that visual experience of implied motion may parallel the positive relationship between real directional-motion and cortical processing. Seven subjects participated in a visual task of implied motion for 4 days, and a pre- and post-test of cortical processing. The results indicated that performance on implied motion is systematically different from performance on a dot motion task. Despite individual differences in performance, overall cortical processing increased from day 1 to day 4.
ContributorsVasefi, Aresh (Author) / Nanez, Jose (Thesis advisor) / Duran, Nicholas (Committee member) / Keil, Thomas J. (Committee member) / Arizona State University (Publisher)
Created2014
152765-Thumbnail Image.png
Description
Flavivirus infections are emerging as significant threats to human health around the globe. Among them West Nile(WNV) and Dengue Virus (DV) are the most prevalent in causing human disease with WNV outbreaks occurring in all areas around the world and DV epidemics in more than 100 countries. WNV is a

Flavivirus infections are emerging as significant threats to human health around the globe. Among them West Nile(WNV) and Dengue Virus (DV) are the most prevalent in causing human disease with WNV outbreaks occurring in all areas around the world and DV epidemics in more than 100 countries. WNV is a neurotropic virus capable of causing meningitis and encephalitis in humans. Currently, there are no therapeutic treatments or vaccines available. The expanding epidemic of WNV demands studies that develop efficacious therapeutics and vaccines and produce them rapidly and inexpensively. In response, our lab developed a plant-derived monoclonal antibody (mAb) (pHu-E16) against DIII (WNV antigen) that is able to neutralize and prevent mice from lethal infection. However, this drug has a short window of efficacy due to pHu-E16's inability to cross the Blood Brain Barrier (BBB) and enter the brain. Here, we constructed a bifunctional diabody, which couples the neutralizing activity of E16 and BBB penetrating activity of 8D3 mAb. We also produced a plant-derived E16 scFv-CH1-3 variant with equivalent specific binding as the full pHu-E16 mAb, but only requiring one gene construct for production. Furthermore, a WNV vaccine based on plant-derived DIII was developed showing proper folding and potentially protective immune response in mice. DV causes severe hemorrhaging diseases especially in people exposed to secondary DV infection from a heterotypic strain. It is hypothesized that sub-neutralizing cross-reactive antibodies from the first exposure aid the second infection in a process called antibody-dependent enhancement (ADE). ADE depends on the ability of mAb to bind Fc receptors (FcγRs), and has become a major roadblock for developing mAb-based therapeutics against DV. We aim to produce an anti-Dengue mAb (E60) in different glycoengineered plant lines that exhibit reduced/differential binding to FcγRs, therefore, reducing or eliminating ADE. We have successfully cloned the molecular constructs of E60, and expressed it in two plant lines with different glycosylation patterns. We demonstrated that both plant-derived E60 mAb glycoforms retained specific recognition and neutralization activity against DV. Overall, our study demonstrates great strives to develop efficacious therapeutics and potent vaccine candidates against Flaviviruses in plant expression systems.
ContributorsHurtado, Jonathan (Author) / Chen, Qiang (Thesis advisor) / Huffman, Holly A (Committee member) / Steele, Kelly P (Committee member) / Arizona State University (Publisher)
Created2014
155898-Thumbnail Image.png
Description
Many Fic domain proteins, through catalyzing post translational modifications (PTM) of protein substrates, functionally contribute to bacterial pathogenesis and the regulation of bacterial growth. Furthermore, one form of Fic-mediated regulation is the Fic toxin-antitoxin system, whereby an antitoxin interacts with and inhibits the Fic toxin. This study sought to determine

Many Fic domain proteins, through catalyzing post translational modifications (PTM) of protein substrates, functionally contribute to bacterial pathogenesis and the regulation of bacterial growth. Furthermore, one form of Fic-mediated regulation is the Fic toxin-antitoxin system, whereby an antitoxin interacts with and inhibits the Fic toxin. This study sought to determine the functional importance of Mycobacterium tuberculosis Fic and its putative antitoxin protein, Rv3642c. Using M. tuberculosis H37Rv genetic deletion mutants, fic and Rv3642c were demonstrated to promote intracellular survival in human THP-1 macrophage-like cells. Unlike other Fic toxins, of Fic toxin-antitoxin systems, Fic did not inhibit bacterial growth in vitro in the absence of Rv3642c. Notably, Fic demonstrated in vitro AMPylation of a THP-1 cell extract protein as shown by immunodetection. Fic also exhibited auto-AMPylation activity. Interestingly, a mutation of the conserved histidine in the Fic domain motif, a residue previously shown to be critical for AMPylation, had no effect on Fic-mediated ATP hydrolysis or AMPylation activity. Rv3642c was demonstrated to form a complex with Fic when co-expressed in Escherichia coli, indicating a toxin-antitoxin interaction. Screening M. tuberculosis protein fractions and culture filtrate with α-Fic and α-Rv3642c rabbit antisera did not detect monomers of Fic or Rv3642c, thus the cellular localization of Fic and the Rv3642c-Fic complex remains unclear. The results of this study provide insight into the function of M. tuberculosis Fic, and suggest that Fic and Rv3642c are important for M. tuberculosis survival in the intracellular macrophage environment. Furthermore, these findings challenge the current dogma that Fic domain catalysis is dependent on the conserved histidine of the Fic motif.
ContributorsLaMarca, Ryan (Author) / Haydel, Shelley (Thesis advisor) / Lake, Douglas (Committee member) / Nickerson, Cheryl (Committee member) / Arizona State University (Publisher)
Created2017
155355-Thumbnail Image.png
Description
Affiliative touch, such as physical affection between relationship partners, activates neural systems associated with reward, relaxation, and attachment. Co-sleeping is a common practice among romantic partners, and the social context of sleep is linked to well-being. The effect of touch during sleep, however, remains largely untested. As a first

Affiliative touch, such as physical affection between relationship partners, activates neural systems associated with reward, relaxation, and attachment. Co-sleeping is a common practice among romantic partners, and the social context of sleep is linked to well-being. The effect of touch during sleep, however, remains largely untested. As a first study, 210 married couples were asked how much they generally touched during sleep and how important it was for them to touch during sleep. I hypothesized that perceptions of more spousal touch during sleep, as well as greater importance placed on that touch, would be associated with better quality of sleep. Given the strong links between touch and attachment, and previous findings of poor sleep associated with attachment anxiety, these effects were expected to be greatest among spouses higher in attachment anxiety (who might benefit most from a sense of security arising from touch). Separate regression analyses were run for husbands and wives, controlling for affective symptoms of depression (which were significant predictors of poor sleep for both spouses). For both spouses, higher reports of amount and importance of touch during sleep predicted better quality of sleep. For wives, the predicted interaction was significant, but in the opposite direction: Reported amount and importance of spousal touch during sleep was positively related to sleep quality only among those with lower attachment anxiety, whereas it was unrelated among those with higher attachment anxiety. Higher attachment anxiety also was related to worse sleep among wives, but not husbands. It may be the case that wives who are lowest in attachment anxiety may feel more comfortable when being touched by their partners. As a result, they may touch more often, place more importance on touch, and be more likely to experience rewards of touch such as better sleep quality. The findings lend support to the idea that social touch can serve a regulatory function, even during sleep.
ContributorsShahid, Shiza (Author) / Burleson, Mary H (Thesis advisor) / Roberts, Nicole A. (Committee member) / Nanez, Jose (Committee member) / Arizona State University (Publisher)
Created2017
155603-Thumbnail Image.png
Description
Alexithymia is a personality trait characterized by a diminished ability to identify and describe feelings, as well as an inability to distinguish physical symptoms associated with emotional arousal. Alexithymia is elevated in both patients with epilepsy (a neurologically-based seizure disorder) and psychogenic nonepileptic seizures (PNES; a psychological condition mimicking epilepsy);

Alexithymia is a personality trait characterized by a diminished ability to identify and describe feelings, as well as an inability to distinguish physical symptoms associated with emotional arousal. Alexithymia is elevated in both patients with epilepsy (a neurologically-based seizure disorder) and psychogenic nonepileptic seizures (PNES; a psychological condition mimicking epilepsy); however, different neuropsychological processes may underlie this deficit in the two groups. To expand on previous research considering factors contributing to alexithymia in these populations, we examined the extent to which scores on the Toronto Alexithymia Scale (TAS-20) were predicted by performance on measures of executive and language functioning. We studied 138 PNES and 150 epilepsy patients with video-EEG confirmed diagnoses. Neuropsychological tests were administered to assess executive functioning (interference scores of the Stroop Color-Word Test and Part B of the Trail Making Test) and language functioning (Animals, Controlled Oral Word Association Test, and Boston Naming Test). Hierarchical linear regressions revealed that the relationships between disparate neuropsychological domains and alexithymia were not moderated by diagnosis of PNES or epilepsy. Multiple regression analyses within each group demonstrated that phonemic verbal fluency and response inhibition were significant predictors of alexithymia in epilepsy. Thus, alexithymia may reflect impairments in language and aspects of executive functioning in both PNES and epilepsy.
ContributorsReynolds, Christopher Martin (Author) / Roberts, Nicole A. (Thesis advisor) / Burleson, Mary H (Committee member) / Nanez, Jose (Committee member) / Arizona State University (Publisher)
Created2017
157913-Thumbnail Image.png
Description
Understanding how microorganisms adapt and respond to the microgravity environment of spaceflight is important for the function and integrity of onboard life support systems, astronaut health and mission success. Microbial contamination of spacecraft Environmental Life Support Systems (ECLSS), including the potable water system, are well documented and have caused major

Understanding how microorganisms adapt and respond to the microgravity environment of spaceflight is important for the function and integrity of onboard life support systems, astronaut health and mission success. Microbial contamination of spacecraft Environmental Life Support Systems (ECLSS), including the potable water system, are well documented and have caused major disruption to spaceflight missions. The potable water system on the International Space Station (ISS) uses recycled wastewater purified by multiple processes so it is safe for astronaut consumption and personal hygiene. However, despite stringent antimicrobial treatments, multiple bacterial species and biofilms have been recovered from this potable water system. This finding raises concern for crew health risks, vehicle operations and ECLSS system integrity during exploration missions. These concerns are further heightened given that 1) potential pathogens have been isolated from the ISS potable water system, 2) the immune response of astronauts is blunted during spaceflight, 3) spaceflight induces unexpected alterations in microbial responses, including growth and biofilm formation, antimicrobial resistance, stress responses, and virulence, and 4) different microbial phenotypes are often observed between reductionistic pure cultures as compared to more complex multispecies co-cultures, the latter of which are more representative of natural environmental conditions. To advance the understanding of the impact of microgravity on microbial responses that could negatively impact spacecraft ECLSS systems and crew health, this study characterized a range of phenotypic profiles in both pure and co-cultures of bacterial isolates collected from the ISS potable water system between 2009 and 2014. Microbial responses profiled included population dynamics, resistance to silver, biofilm formation, and in vitro colonization of intestinal epithelial cells. Growth characteristics and antibiotic sensitivities for bacterial strains were evaluated to develop selective and/or differential media that allow for isolation of a pure culture from co-cultures, which was critical for the success of this study. Bacterial co-culture experiments were performed using dynamic Rotating Wall Vessel (RWV) bioreactors under spaceflight analogue (Low Shear Modeled Microgravity/LSMMG) and control conditions. These experiments indicated changes in fluid shear have minimal impact on strain recovery. The antimicrobial efficacy of silver on both sessile co-cultures, grown on 316L stainless steel coupons, and planktonic co-cultures showed that silver did not uniformly reduce the recovery of all strains; however, it had a stronger antimicrobial effect on biofilm cultures than planktonic cultures. The impact of silver on the ability of RWV cultured planktonic and biofilm bacterial co-cultures to colonize human intestinal epithelial cells showed that, those strains which were impacted by silver treatment, often increased adherence to the monolayer. Results from these studies provide insight into the dynamics of polymicrobial community interactions, biofilm formation and survival mechanisms of ISS potable water isolates, with potential application for future design of ECLSS systems for sustainable human space exploration.
ContributorsKing, Olivia G (Author) / Nickerson, Cheryl (Thesis advisor) / Barrila, Jennifer (Committee member) / Ott, C (Committee member) / Yang, Jiseon (Committee member) / Arizona State University (Publisher)
Created2019
161233-Thumbnail Image.png
Description
Influenza is a deadly disease that poses a major threat to global health. The surface proteins of influenza A, the type most often associated with epidemics and pandemics, mutate at a very high frequency from season to season, reducing the efficacy of seasonal influenza vaccines. However, certain regions of these

Influenza is a deadly disease that poses a major threat to global health. The surface proteins of influenza A, the type most often associated with epidemics and pandemics, mutate at a very high frequency from season to season, reducing the efficacy of seasonal influenza vaccines. However, certain regions of these proteins are conserved between strains of influenza A, making them attractive targets for the development of a ‘universal’ influenza vaccine. One of these highly conserved regions is the ectodomain of the influenza matrix 2 protein (M2e). Studies have shown that M2e is poorly immunogenic on its own, but when properly adjuvanted it can be used to induce protective immune responses against many strains of influenza A. In this thesis, M2e was fused to a pair experimental ‘vaccine platforms’: an antibody fusion protein designed to assemble into a recombinant immune complex (RIC) and the hepatitis B core antigen (HBc) that can assemble into virus-like particles (VLP). The two antigens were produced in Nicotiana benthamiana plants through the use of geminiviral vectors and were subsequently evaluated in mouse trials. Mice were administered three doses of either the VLP alone or a 1:1 combination of the VLP and the RIC, and recipients of both the VLP and RIC exhibited endpoint anti-M2e antibody titers that were 2 to 3 times higher than mice that received the VLP alone. While IgG2a:IgG1 ratios, which can suggest the type of immune response (TH1 vs TH2) an antigen will elicit, were higher in mice vaccinated solely with the VLP, the higher overall titers are encouraging and demonstrate a degree of interaction between the RIC and VLP vaccines. Further research is necessary to determine the optimal balance of VLP and RIC to maximize IgG2a:IGg1 ratios as well as whether such interaction would be observed through the use of a variety of diverse antigens, though the results of other studies conducted in this lab suggests that this is indeed the case. The results of this study demonstrate not only the successful development of a promising new universal influenza A vaccine, but also that co-delivering different types of recombinant vaccines could reduce the total number of vaccine doses needed to achieve a protective immune response.
ContributorsFavre, Brandon Chetan (Author) / Mason, Hugh S (Thesis advisor) / Mor, Tsafrir (Committee member) / Chen, Qiang (Committee member) / Arizona State University (Publisher)
Created2019