Matching Items (89)
Filtering by

Clear all filters

152215-Thumbnail Image.png
Description
As the desire for innovation increases, individuals and companies seek reliable ways to encourage their creative side. There are many office superstitions about how creativity works, but few are based on psychological science and even fewer have been tested empirically. One of the most prevalent superstitions is the use of

As the desire for innovation increases, individuals and companies seek reliable ways to encourage their creative side. There are many office superstitions about how creativity works, but few are based on psychological science and even fewer have been tested empirically. One of the most prevalent superstitions is the use of objects to inspire creativity or even make a creative room. It is important to test this kind of notion so workplaces can find reliable ways to be innovative, but also because psychology lacks a breadth of literature on how environmental cues interact with people to shape their mental state. This experiment seeks to examine those gaps and fill in the next steps needed for examining at how multiple objects prime creativity. Participants completed two creativity tasks: one for idea generation and one that relies on insight problem solving, the Remote Association Task. There were four priming conditions that relied on objects: a zero object condition, a four neutral (office) objects condition, a single artistic object condition, and finally a four artistic objects condition. There were no differences found between groups for either type of task or in mood or artistic experience. The number of years a participant spent in the United States, however, did correlate with mood, idea generation scores, and insight problem scores. This potentially demonstrates that performance on idea generation and insight tasks rely on the tasks created and culture.
ContributorsJariwala, Shree (Author) / Branaghan, Russell (Thesis advisor) / Cooke, Nancy J. (Committee member) / Song, Hyunjin (Committee member) / Arizona State University (Publisher)
Created2013
152174-Thumbnail Image.png
Description
Recent trends in the electric power industry have led to more attention to optimal operation of power transformers. In a deregulated environment, optimal operation means minimizing the maintenance and extending the life of this critical and costly equipment for the purpose of maximizing profits. Optimal utilization of a transformer can

Recent trends in the electric power industry have led to more attention to optimal operation of power transformers. In a deregulated environment, optimal operation means minimizing the maintenance and extending the life of this critical and costly equipment for the purpose of maximizing profits. Optimal utilization of a transformer can be achieved through the use of dynamic loading. A benefit of dynamic loading is that it allows better utilization of the transformer capacity, thus increasing the flexibility and reliability of the power system. This document presents the progress on a software application which can estimate the maximum time-varying loading capability of transformers. This information can be used to load devices closer to their limits without exceeding the manufacturer specified operating limits. The maximally efficient dynamic loading of transformers requires a model that can accurately predict both top-oil temperatures (TOTs) and hottest-spot temperatures (HSTs). In the previous work, two kinds of thermal TOT and HST models have been studied and used in the application: the IEEE TOT/HST models and the ASU TOT/HST models. And, several metrics have been applied to evaluate the model acceptability and determine the most appropriate models for using in the dynamic loading calculations. In this work, an investigation to improve the existing transformer thermal models performance is presented. Some factors that may affect the model performance such as improper fan status and the error caused by the poor performance of IEEE models are discussed. Additional methods to determine the reliability of transformer thermal models using metrics such as time constant and the model parameters are also provided. A new production grade application for real-time dynamic loading operating purpose is introduced. This application is developed by using an existing planning application, TTeMP, as a start point, which is designed for the dispatchers and load specialists. To overcome the limitations of TTeMP, the new application can perform dynamic loading under emergency conditions, such as loss-of transformer loading. It also has the capability to determine the emergency rating of the transformers for a real-time estimation.
ContributorsZhang, Ming (Author) / Tylavsky, Daniel J (Thesis advisor) / Ayyanar, Raja (Committee member) / Holbert, Keith E. (Committee member) / Arizona State University (Publisher)
Created2013
151289-Thumbnail Image.png
Description
A distributed-parameter model is developed for a pressurized water reactor (PWR) in order to analyze the frequency behavior of the nuclear reactor. The model is built based upon the partial differential equations describing heat transfer and fluid flow in the reactor core. As a comparison, a multi-lump reactor core model

A distributed-parameter model is developed for a pressurized water reactor (PWR) in order to analyze the frequency behavior of the nuclear reactor. The model is built based upon the partial differential equations describing heat transfer and fluid flow in the reactor core. As a comparison, a multi-lump reactor core model with five fuel lumps and ten coolant lumps using Mann's model is employed. The derivations of the different transfer functions in both models are also presented with emphasis on the distributed parameter. In order to contrast the two models, Bode plots of the transfer functions are generated using data from the Palo Verde Nuclear Generating Station. Further, a detailed contradistinction between these two models is presented. From the comparison, the features of both models are presented. The distributed parameter model has the ability to offer an accurate transfer function at any location throughout the reactor core. In contrast, the multi-lump parameter model can only provide the average value in a given region (lump). Also, in the distributed parameter model only the feedback according to the specific location under study is incorporated into the transfer function; whereas the transfer functions derived from the multi-lump model contain the average feedback effects happening all over the reactor core.
ContributorsZhang, Taipeng (Author) / Holbert, Keith E. (Thesis advisor) / Vittal, Vijay (Committee member) / Tylavsky, Daniel (Committee member) / Arizona State University (Publisher)
Created2012
151325-Thumbnail Image.png
Description
As technology enhances our communication capabilities, the number of distributed teams has risen in both public and private sectors. There is no doubt that these technological advancements have addressed a need for communication and collaboration of distributed teams. However, is all technology useful for effective collaboration? Are some methods (modalities)

As technology enhances our communication capabilities, the number of distributed teams has risen in both public and private sectors. There is no doubt that these technological advancements have addressed a need for communication and collaboration of distributed teams. However, is all technology useful for effective collaboration? Are some methods (modalities) of communication more conducive than others to effective performance and collaboration of distributed teams? Although previous literature identifies some differences in modalities, there is little research on geographically distributed mobile teams (DMTs) performing a collaborative task. To investigate communication and performance in this context, I developed the GeoCog system. This system is a mobile communications and collaboration platform enabling small, distributed teams of three to participate in a variant of the military-inspired game, "Capture the Flag". Within the task, teams were given one hour to complete as many "captures" as possible while utilizing resources to the advantage of the team. In this experiment, I manipulated the modality of communication across three conditions with text-based messaging only, vocal communication only, and a combination of the two conditions. It was hypothesized that bi-modal communication would yield superior performance compared to either single modality conditions. Results indicated that performance was not affected by modality. Further results, including communication analysis, are discussed within this paper.
ContributorsChampion, Michael (Author) / Cooke, Nancy J. (Thesis advisor) / Shope, Steven (Committee member) / Wu, Bing (Committee member) / Arizona State University (Publisher)
Created2012
151381-Thumbnail Image.png
Description
The dissolution of metal layers such as silver into chalcogenide glass layers such as germanium selenide changes the resistivity of the metal and chalcogenide films by a great extent. It is known that the incorporation of the metal can be achieved by ultra violet light exposure or thermal processes. In

The dissolution of metal layers such as silver into chalcogenide glass layers such as germanium selenide changes the resistivity of the metal and chalcogenide films by a great extent. It is known that the incorporation of the metal can be achieved by ultra violet light exposure or thermal processes. In this work, the use of metal dissolution by exposure to gamma radiation has been explored for radiation sensor applications. Test structures were designed and a process flow was developed for prototype sensor fabrication. The test structures were designed such that sensitivity to radiation could be studied. The focus is on the effect of gamma rays as well as ultra violet light on silver dissolution in germanium selenide (Ge30Se70) chalcogenide glass. Ultra violet radiation testing was used prior to gamma exposure to assess the basic mechanism. The test structures were electrically characterized prior to and post irradiation to assess resistance change due to metal dissolution. A change in resistance was observed post irradiation and was found to be dependent on the radiation dose. The structures were also characterized using atomic force microscopy and roughness measurements were made prior to and post irradiation. A change in roughness of the silver films on Ge30Se70 was observed following exposure. This indicated the loss of continuity of the film which causes the increase in silver film resistance following irradiation. Recovery of initial resistance in the structures was also observed after the radiation stress was removed. This recovery was explained with photo-stimulated deposition of silver from the chalcogenide at room temperature confirmed with the re-appearance of silver dendrites on the chalcogenide surface. The results demonstrate that it is possible to use the metal dissolution effect in radiation sensing applications.
ContributorsChandran, Ankitha (Author) / Kozicki, Michael N (Thesis advisor) / Holbert, Keith E. (Committee member) / Barnaby, Hugh (Committee member) / Arizona State University (Publisher)
Created2012
152388-Thumbnail Image.png
Description
Microprocessors are the processing heart of any digital system and are central to all the technological advancements of the age including space exploration and monitoring. The demands of space exploration require a special class of microprocessors called radiation hardened microprocessors which are less susceptible to radiation present outside the earth's

Microprocessors are the processing heart of any digital system and are central to all the technological advancements of the age including space exploration and monitoring. The demands of space exploration require a special class of microprocessors called radiation hardened microprocessors which are less susceptible to radiation present outside the earth's atmosphere, in other words their functioning is not disrupted even in presence of disruptive radiation. The presence of these particles forces the designers to come up with design techniques at circuit and chip levels to alleviate the errors which can be encountered in the functioning of microprocessors. Microprocessor evolution has been very rapid in terms of performance but the same cannot be said about its rad-hard counterpart. With the total data processing capability overall increasing rapidly, the clear lack of performance of the processors manifests as a bottleneck in any processing system. To design high performance rad-hard microprocessors designers have to overcome difficult design problems at various design stages i.e. Architecture, Synthesis, Floorplanning, Optimization, routing and analysis all the while maintaining circuit radiation hardness. The reference design `HERMES' is targeted at 90nm IBM G process and is expected to reach 500Mhz which is twice as fast any processor currently available. Chapter 1 talks about the mechanisms of radiation effects which cause upsets and degradation to the functioning of digital circuits. Chapter 2 gives a brief description of the components which are used in the design and are part of the consistent efforts at ASUVLSI lab culminating in this chip level implementation of the design. Chapter 3 explains the basic digital design ASIC flow and the changes made to it leading to a rad-hard specific ASIC flow used in implementing this chip. Chapter 4 talks about the triple mode redundant (TMR) specific flow which is used in the block implementation, delineating the challenges faced and the solutions proposed to make the flow work. Chapter 5 explains the challenges faced and solutions arrived at while using the top-level flow described in chapter 3. Chapter 6 puts together the results and analyzes the design in terms of basic integrated circuit design constraints.
ContributorsRamamurthy, Chandarasekaran (Author) / Clark, Lawrence T (Thesis advisor) / Holbert, Keith E. (Committee member) / Barnaby, Hugh J (Committee member) / Mayhew, David (Committee member) / Arizona State University (Publisher)
Created2013
151015-Thumbnail Image.png
Description
Fixed-pointer moving-scale tape displays are a compact way to present wide range dynamic data, and are commonly employed in aircraft and spacecraft to display the primary parameters of airspeed, altitude and heading. A limitation of the moving tape format is its inability to natively display off scale target, reference or

Fixed-pointer moving-scale tape displays are a compact way to present wide range dynamic data, and are commonly employed in aircraft and spacecraft to display the primary parameters of airspeed, altitude and heading. A limitation of the moving tape format is its inability to natively display off scale target, reference or 'bug' values. The hypothesis tested was that a non-linear fisheye presentation (made possible by modern display technology) would maintain the essential functionality and compactness of existing moving tape displays while increasing situational awareness by ecologically displaying a wider set of reference values. Experimentation showed that the speed and accuracy of reading the center system value was not significantly changed with two types of expanded range displays. The limited situational awareness tests did not show a significant improvement with the new displays, but since no functionality was degraded further testing of expanded range displays may be productive.
ContributorsEnglish, Dave (Author) / Branaghan, Russell J (Thesis advisor) / Cooke, Nancy J. (Committee member) / Sanchez, Christopher A (Committee member) / Arizona State University (Publisher)
Created2012
151053-Thumbnail Image.png
Description
Research on priming has shown that a stimulus can cause people to behave according to the stereotype held about the stimulus. Two experiments were conducted in which the effects of elderly priming were tested by use of a driving simulator. In both experiments, participants drove through a simulated world guided

Research on priming has shown that a stimulus can cause people to behave according to the stereotype held about the stimulus. Two experiments were conducted in which the effects of elderly priming were tested by use of a driving simulator. In both experiments, participants drove through a simulated world guided by either an elderly or a younger female voice. The voices told the participants where to make each of six turns. Both experiments yielded slower driving speeds in the elderly voice condition. The effect was universal regardless of implicit and explicit attitudes towards elderly people.
ContributorsFoster, L Bryant (Author) / Branaghan, Russell (Thesis advisor) / Becker, David (Committee member) / Cooke, Nancy J. (Committee member) / Arizona State University (Publisher)
Created2012
151060-Thumbnail Image.png
Description
By extracting communication sequences from audio data collected during two separate five-person mission-planning tasks, interaction patterns in team communication were analyzed using a recurrence-based, nonlinear dynamics approach. These methods, previously successful in detecting pattern change in a three-person team task, were evaluated for their applicability to larger team settings, and

By extracting communication sequences from audio data collected during two separate five-person mission-planning tasks, interaction patterns in team communication were analyzed using a recurrence-based, nonlinear dynamics approach. These methods, previously successful in detecting pattern change in a three-person team task, were evaluated for their applicability to larger team settings, and their ability to detect pattern change when team members switched roles or locations partway through the study (Study 1) or change in patterns over time (Study 2). Both traditional interaction variables (Talking Time, Co-Talking Time, and Sequence Length of Interactions) and dynamic interaction variables (Recurrence Rate, Determinism, and Pattern Information) were explored as indicators and predictors of changes in team structure and performance. Results from these analyses provided support that both traditional and dynamic interaction variables reflect some changes in team structure and performance. However, changes in communication patterns were not detected. Because simultaneous conversations are possible in larger teams, but not detectable through our communication sequence methods, team pattern changes may not be visible in communication sequences for larger teams. This suggests that these methods may not be applicable for larger teams, or in situations where simultaneous conversations may occur. Further research is needed to continue to explore the applicability of recurrence-based nonlinear dynamics in the analysis of team communication.
ContributorsFouse, Shannon (Author) / Cooke, Nancy J. (Thesis advisor) / Becker, David (Thesis advisor) / Gorman, Jamie (Committee member) / Arizona State University (Publisher)
Created2012
150680-Thumbnail Image.png
Description
There have been conflicting accounts of animation's facilitation in learning from instructional media, being at best no different if not hindering performance. Procedural motor learning represents one of the few the areas in which animations have shown to be facilitative. These studies examine the effects of instructional media (animation vs.

There have been conflicting accounts of animation's facilitation in learning from instructional media, being at best no different if not hindering performance. Procedural motor learning represents one of the few the areas in which animations have shown to be facilitative. These studies examine the effects of instructional media (animation vs. static), rotation (facing vs. over the shoulder) and spatial abilities (low vs. high spatial abilities) on two procedural motor tasks, knot tying and endoscope reprocessing. Results indicate that for all conditions observed in which participants engaged in procedural motor learning tasks, performance was significantly improved with animations over static images. Further, performance was greater for rotations of instructional media that did not require participants to perform a mental rotation under some circumstances. Interactions between Media x Rotation suggest that media that was animated and did not require a participant to mentally rotate led to improved performance. Individual spatial abilities were found to influence total steps correct and total number of errors made in the knot tying task, but this was not observed in the endoscope task. These findings have implications for the design of instructional media for procedural motor tasks and provide strong support for the usage of animations in this context.
ContributorsGarland, T. B (Author) / Sanchez, Chris A (Thesis advisor) / Cooke, Nancy J. (Committee member) / Branaghan, Russel (Committee member) / Arizona State University (Publisher)
Created2012