Matching Items (2)
Filtering by

Clear all filters

161497-Thumbnail Image.png
Description
The Pathways of Distinction Analysis (PoDA) program calculates relationships between a given group of genes contained within a pathway, and a disease state. It was used here to investigate liver cancer, and to explore how genetic variability may contribute to the different rates of development of the disease in males

The Pathways of Distinction Analysis (PoDA) program calculates relationships between a given group of genes contained within a pathway, and a disease state. It was used here to investigate liver cancer, and to explore how genetic variability may contribute to the different rates of development of the disease in males and females. The goal of the study was to identify germline variation that differs by sex in hepatocellular carcinoma. Using the program, multiple pathways and genes were identified to have significant differences in their relationship to liver cancer in males and females. In animal studies, the genes which were identified using the PoDA analysis have been shown to impact liver cancer, often with different results for males and females. While these genes are often the focus in animal models, they are absent from current Genome Wide Association Studies (GWAS) catalogs for humans. By working to bridge the results of animal studies and human studies, the results help to identify the causes of liver cancer, and more specifically, the reason the disease affects males at much higher rates. The differences in pathways identified to be significant for the two sexes indicate the germline variance may play sex-specific roles in the development of hepatocellular carcinoma. Additionally, these results reinforce the capacity of the PoDA analysis to identify genes that may be missed by more traditional GWAS methods. This study lays the groundwork for further investigations into the identified genes and pathways, and how they behave differently within males and females.
ContributorsOlson, Erik Jon (Author) / Buetow, Kenneth (Thesis advisor) / Wilson, Melissa (Committee member) / Cartwright, Reed (Committee member) / Arizona State University (Publisher)
Created2021
156088-Thumbnail Image.png
Description
Obesity impairs skeletal muscle maintenance and regeneration, a condition that can progressively lead to muscle loss, but the mechanisms behind it are unknown. Muscle is primarily composed of multinucleated cells called myotubes which are derived by the fusion of mononucleated myocytes. A key mediator in this process is the cellular

Obesity impairs skeletal muscle maintenance and regeneration, a condition that can progressively lead to muscle loss, but the mechanisms behind it are unknown. Muscle is primarily composed of multinucleated cells called myotubes which are derived by the fusion of mononucleated myocytes. A key mediator in this process is the cellular fusion protein syncytin-1. This led to the hypothesis that syncytin-1 could be decreased in the muscle of obese/insulin resistant individuals. In contrast, it was found that obese/insulin resistant subjects had higher syncytin-1 expression in the muscle compared to that of the lean subjects. Across the subjects, syncytin-1 correlated significantly with body mass index, percent body fat, blood glucose and HbA1c levels, insulin sensitivity and muscle protein fractional synthesis rate. The concentrations of specific plasma fatty acids, such as the saturated fatty acid (palmitate) and monounsaturated fatty acid (oleate) are known to be altered in obese/insulin resistant humans, and also to influence the protein synthesis in muscle. Therefore, it was evaluated that the effects of palmitate and oleate on syncytin-1 expression, as well as 4E-BP1 phosphorylation, a key mechanism regulating muscle protein synthesis in insulin stimulated C2C12 myotubes. The results showed that treatment with 20 nM insulin, 300 µM oleate, 300 µM oleate +20 nM insulin and 300 µM palmitate + 300 µM oleate elevated 4E-BP1 phosphorylation. At the same time, 20 nM insulin, 300 µM palmitate, 300 µM oleate + 20 nM insulin and 300 µM palmitate + 300 µM oleate elevated syncytin-1 expression. Insulin stimulated muscle syncytin-1 expression and 4E-BP1 phosphorylation, and this effect was comparable to that observed in the presence of oleate alone. However, the presence of palmitate + oleate diminished the stimulatory effect of insulin on muscle syncytin-1 expression and 4E-BP1 phosphorylation. These findings indicate oleate but not palmitate increased total 4E-BP1 phosphorylation regardless of insulin and the presence of palmitate in insulin mediated C2C12 cells. The presence of palmitate inhibited the upregulation of total 4EB-P1 phosphorylation. Palmitate but not oleate increased syncytin-1 expression in insulin mediated C2C12 myotubes. It is possible that chronic hyperinsulinemia in obesity and/or elevated levels of fatty acids such as palmitate in plasma could have contributed to syncytin-1 overexpression and decreased muscle protein fractional synthesis rate in obese/insulin resistant human muscle.
ContributorsRavichandran, Jayachandran (Author) / Katsanos, Christos (Thesis advisor) / Coletta, Dawn (Committee member) / Dickinson, Jared (Committee member) / Arizona State University (Publisher)
Created2017