Matching Items (4)
Filtering by

Clear all filters

Description
To guide the timetabling and vehicle assignment of urban bus systems, a group of optimization models were developed for scenarios from simple to complex. The model took the interaction of prospective passengers and bus companies into consideration to achieve the maximum financial benefit as

To guide the timetabling and vehicle assignment of urban bus systems, a group of optimization models were developed for scenarios from simple to complex. The model took the interaction of prospective passengers and bus companies into consideration to achieve the maximum financial benefit as well as social satisfaction. The model was verified by a series of case studies and simulation from which some interesting conclusions were drawn.
ContributorsHuang, Shiyang (Author) / Askin, Ronald G. (Thesis advisor) / Mirchandani, Pitu (Committee member) / McCarville, Daniel R. (Committee member) / Arizona State University (Publisher)
Created2014
153263-Thumbnail Image.png
Description

In this paper, a literature review is presented on the application of Bayesian networks applied in system reliability analysis. It is shown that Bayesian networks have become a popular modeling framework for system reliability analysis due to the benefits that Bayesian networks have the capability and flexibility to model complex

In this paper, a literature review is presented on the application of Bayesian networks applied in system reliability analysis. It is shown that Bayesian networks have become a popular modeling framework for system reliability analysis due to the benefits that Bayesian networks have the capability and flexibility to model complex systems, update the probability according to evidences and give a straightforward and compact graphical representation. Research on approaches for Bayesian network learning and inference are summarized. Two groups of models with multistate nodes were developed for scenarios from constant to continuous time to apply and contrast Bayesian networks with classical fault tree method. The expanded model discretized the continuous variables and provided failure related probability distribution over time.

ContributorsZhou, Duan (Author) / Pan, Rong (Thesis advisor) / McCarville, Daniel R. (Committee member) / Zhang, Muhong (Committee member) / Arizona State University (Publisher)
Created2014
153557-Thumbnail Image.png
Description

The purpose of this research is to efficiently analyze certain data provided and to see if a useful trend can be observed as a result. This trend can be used to analyze certain probabilities. There are three main pieces of data which are being analyzed in this research: The value

The purpose of this research is to efficiently analyze certain data provided and to see if a useful trend can be observed as a result. This trend can be used to analyze certain probabilities. There are three main pieces of data which are being analyzed in this research: The value for δ of the call and put option, the %B value of the stock, and the amount of time until expiration of the stock option. The %B value is the most important. The purpose of analyzing the data is to see the relationship between the variables and, given certain values, what is the probability the trade makes money. This result will be used in finding the probability certain trades make money over a period of time.

Since options are so dependent on probability, this research specifically analyzes stock options rather than stocks themselves. Stock options have value like stocks except options are leveraged. The most common model used to calculate the value of an option is the Black-Scholes Model [1]. There are five main variables the Black-Scholes Model uses to calculate the overall value of an option. These variables are θ, δ, γ, v, and ρ. The variable, θ is the rate of change in price of the option due to time decay, δ is the rate of change of the option’s price due to the stock’s changing value, γ is the rate of change of δ, v represents the rate of change of the value of the option in relation to the stock’s volatility, and ρ represents the rate of change in value of the option in relation to the interest rate [2]. In this research, the %B value of the stock is analyzed along with the time until expiration of the option. All options have the same δ. This is due to the fact that all the options analyzed in this experiment are less than two months from expiration and the value of δ reveals how far in or out of the money an option is.

The machine learning technique used to analyze the data and the probability



is support vector machines. Support vector machines analyze data that can be classified in one of two or more groups and attempts to find a pattern in the data to develop a model, which reliably classifies similar, future data into the correct group. This is used to analyze the outcome of stock options.

ContributorsReeves, Michael (Author) / Richa, Andrea (Thesis advisor) / McCarville, Daniel R. (Committee member) / Davulcu, Hasan (Committee member) / Arizona State University (Publisher)
Created2015
155483-Thumbnail Image.png
Description
A lot of research can be seen in the field of social robotics that majorly concentrate on various aspects of social robots including design of mechanical parts and their move- ment, cognitive speech and face recognition capabilities. Several robots have been developed with the intention of being social, like humans,

A lot of research can be seen in the field of social robotics that majorly concentrate on various aspects of social robots including design of mechanical parts and their move- ment, cognitive speech and face recognition capabilities. Several robots have been developed with the intention of being social, like humans, without much emphasis on how human-like they actually look, in terms of expressions and behavior. Fur- thermore, a substantial disparity can be seen in the success of results of any research involving ”humanizing” the robots’ behavior, or making it behave more human-like as opposed to research into biped movement, movement of individual body parts like arms, fingers, eyeballs, or human-like appearance itself. The research in this paper in- volves understanding why the research on facial expressions of social humanoid robots fails where it is not accepted completely in the current society owing to the uncanny valley theory. This paper identifies the problem with the current facial expression research as information retrieval problem. This paper identifies the current research method in the design of facial expressions of social robots, followed by using deep learning as similarity evaluation technique to measure the humanness of the facial ex- pressions developed from the current technique and further suggests a novel solution to the facial expression design of humanoids using deep learning.
ContributorsMurthy, Shweta (Author) / Gaffar, Ashraf (Thesis advisor) / Ghazarian, Arbi (Committee member) / Gonzalez-Sanchez, Javier (Committee member) / Arizona State University (Publisher)
Created2017