Matching Items (107)
Filtering by

Clear all filters

150373-Thumbnail Image.png
Description
Separation from a loved one is a highly stressful event. The range and intensity of emotions accompanying such a separation arguably are amplified when one's spouse deploys. This thesis examines at-home spouses (AHSs) of deployed military and how emotion, marital satisfaction, and communication are impacted throughout the deployment cycle. Additionally,

Separation from a loved one is a highly stressful event. The range and intensity of emotions accompanying such a separation arguably are amplified when one's spouse deploys. This thesis examines at-home spouses (AHSs) of deployed military and how emotion, marital satisfaction, and communication are impacted throughout the deployment cycle. Additionally, I explore technology as a possible coping mechanism to help AHSs adapt and overcome stressfulness of deployment. One hundred sixty-six married females with a partner currently deployed, anticipating deployment, or recently returned from deployment completed an on-line survey. It was predicted AHSs would experience specific emotions during each phase, categorized as "anticipatory," (e.g., anger, worry) "absence" (e.g., lonely, sad) or "post" (e.g., happiness, relief); marital satisfaction also was predicted to be higher among spouses whose partner recently returned from deployment versus was deployed or anticipating deployment. Data showed AHSs whose partner was anticipating or currently deployed reported more "anticipatory" and "absence" emotions than AHSs with a recently returned partner. The former two groups did not differ in these emotions. AHSs with a recently returned partner reported more "post" emotions than the other two groups. Marital satisfaction did not differ based on deployment status. It was also predicted that among AHSs with a currently deployed partner, less negative emotion upon deployment would be associated with more frequent communication during deployment. Data showed AHSs who reported less negative emotion upon deployment engaged in more frequent communication with their deployed partner. Lastly, I predicted AHSs whose partners are currently deployed and who prefer modes of communication allowing direct contact (e.g., Skype) will experience less negative emotions than AHSs who prefer indirect contact (e.g., e-mail). Data showed reports of negative emotion did not differ based on preference for direct versus indirect communication. Therefore, negative emotions may develop and persist before and during deployment, but when the partner returns home, spouses do experience a rebound of positive emotions. Additionally, emotions at the time of deployment may be useful in predicting spouses' communication frequency during deployment. Findings aim to provide knowledge of family life during separation and explore technology as a possible coping mechanism for AHSs.
ContributorsPowell, Katrina D (Author) / Roberts, Nicole A. (Thesis advisor) / Burleson, Mary H. (Committee member) / Hall, Deborah (Committee member) / Arizona State University (Publisher)
Created2011
150106-Thumbnail Image.png
Description
Optical receivers have many different uses covering simple infrared receivers, high speed fiber optic communication and light based instrumentation. All of them have an optical receiver that converts photons to current followed by a transimpedance amplifier to convert the current to a useful voltage. Different systems create different requirements for

Optical receivers have many different uses covering simple infrared receivers, high speed fiber optic communication and light based instrumentation. All of them have an optical receiver that converts photons to current followed by a transimpedance amplifier to convert the current to a useful voltage. Different systems create different requirements for each receiver. High speed digital communication require high throughput with enough sensitivity to keep the bit error rate low. Instrumentation receivers have a lower bandwidth, but higher gain and sensitivity requirements. In this thesis an optical receiver for use in instrumentation in presented. It is an entirely monolithic design with the photodiodes on the same substrate as the CMOS circuitry. This allows for it to be built into a focal-plane array, but it places some restriction on the area. It is also designed for in-situ testing and must be able to cancel any low frequency noise caused by ambient light. The area restrictions prohibit the use of a DC blocking capacitor to reject the low frequency noise. In place a servo loop was wrapped around the system to reject any DC offset. A modified Cherry-Hooper architecture was used for the transimpedance amplifier. This provides the flexibility to create an amplifier with high gain and wide bandwidth that is independent of the input capacitance. The downside is the increased complexity of the design makes stability paramount to the design. Another drawback is the high noise associated with low input impedance that decouples the input capacitance from the bandwidth. This problem is compounded by the servo loop feed which leaves the output noise of some amplifiers directly referred to the input. An in depth analysis of each circuit block's noise contribution is presented.
ContributorsLaFevre, Kyle (Author) / Bakkaloglu, Bertan (Thesis advisor) / Barnaby, Hugh (Committee member) / Vermeire, Bert (Committee member) / Arizona State University (Publisher)
Created2011
151707-Thumbnail Image.png
Description
Perceptual learning by means of coherent motion training paradigms has been shown to produce plasticity in lower and higher-level visual systems within the human occipital lobe both supra- and subliminally. However, efficiency of training methods that produce consolidation in the visual system via coherent motion has yet to be experimentally

Perceptual learning by means of coherent motion training paradigms has been shown to produce plasticity in lower and higher-level visual systems within the human occipital lobe both supra- and subliminally. However, efficiency of training methods that produce consolidation in the visual system via coherent motion has yet to be experimentally determined. Furthermore, the effects of coherent motion training on reading comprehension, in clinical and normal populations, are still nascent. In the present study, 20 participants were randomly assigned to one of four experimental conditions. Two conditions had a participation requirement of four days while two conditions required eight days of participation. These conditions were further divided into 500 or 1000 trials per day (4 x 500, 4 x 1000, 8 x 500, 8 x 1000). Additional pre-test and post-test days were used to attain timed pre- and post-tests on the Wide Range Achievement Test IV (WRAT IV) reading comprehension battery. Furthermore, a critical flicker fusion threshold (CFFT) score was taken on a macular pigment densitometer on the pre-test and post-test day. Participants showed significant improvement in CFFT levels, WRAT IV reading comprehension, and speed of completion between pre-test and post-test; however, degree of improvement did not vary as a function of training condition. An interaction between training condition and degree of improvement was evident in coherent dot motion contrast scores, with significant training plasticity occurring in the 4 x 1000 and 8 x 500 conditions.
ContributorsGroth, Anthony (Author) / Náñez, José E. (Thesis advisor) / Hall, Deborah (Committee member) / Risko, Evan F. (Committee member) / Arizona State University (Publisher)
Created2013
151846-Thumbnail Image.png
Description
Efficiency of components is an ever increasing area of importance to portable applications, where a finite battery means finite operating time. Higher efficiency devices need to be designed that don't compromise on the performance that the consumer has come to expect. Class D amplifiers deliver on the goal of increased

Efficiency of components is an ever increasing area of importance to portable applications, where a finite battery means finite operating time. Higher efficiency devices need to be designed that don't compromise on the performance that the consumer has come to expect. Class D amplifiers deliver on the goal of increased efficiency, but at the cost of distortion. Class AB amplifiers have low efficiency, but high linearity. By modulating the supply voltage of a Class AB amplifier to make a Class H amplifier, the efficiency can increase while still maintaining the Class AB level of linearity. A 92dB Power Supply Rejection Ratio (PSRR) Class AB amplifier and a Class H amplifier were designed in a 0.24um process for portable audio applications. Using a multiphase buck converter increased the efficiency of the Class H amplifier while still maintaining a fast response time to respond to audio frequencies. The Class H amplifier had an efficiency above the Class AB amplifier by 5-7% from 5-30mW of output power without affecting the total harmonic distortion (THD) at the design specifications. The Class H amplifier design met all design specifications and showed performance comparable to the designed Class AB amplifier across 1kHz-20kHz and 0.01mW-30mW. The Class H design was able to output 30mW into 16Ohms without any increase in THD. This design shows that Class H amplifiers merit more research into their potential for increasing efficiency of audio amplifiers and that even simple designs can give significant increases in efficiency without compromising linearity.
ContributorsPeterson, Cory (Author) / Bakkaloglu, Bertan (Thesis advisor) / Barnaby, Hugh (Committee member) / Kiaei, Sayfe (Committee member) / Arizona State University (Publisher)
Created2013
152139-Thumbnail Image.png
Description
ABSTRACT Developing new non-traditional device models is gaining popularity as the silicon-based electrical device approaches its limitation when it scales down. Membrane systems, also called P systems, are a new class of biological computation model inspired by the way cells process chemical signals. Spiking Neural P systems (SNP systems), a

ABSTRACT Developing new non-traditional device models is gaining popularity as the silicon-based electrical device approaches its limitation when it scales down. Membrane systems, also called P systems, are a new class of biological computation model inspired by the way cells process chemical signals. Spiking Neural P systems (SNP systems), a certain kind of membrane systems, is inspired by the way the neurons in brain interact using electrical spikes. Compared to the traditional Boolean logic, SNP systems not only perform similar functions but also provide a more promising solution for reliable computation. Two basic neuron types, Low Pass (LP) neurons and High Pass (HP) neurons, are introduced. These two basic types of neurons are capable to build an arbitrary SNP neuron. This leads to the conclusion that these two basic neuron types are Turing complete since SNP systems has been proved Turing complete. These two basic types of neurons are further used as the elements to construct general-purpose arithmetic circuits, such as adder, subtractor and comparator. In this thesis, erroneous behaviors of neurons are discussed. Transmission error (spike loss) is proved to be equivalent to threshold error, which makes threshold error discussion more universal. To improve the reliability, a new structure called motif is proposed. Compared to Triple Modular Redundancy improvement, motif design presents its efficiency and effectiveness in both single neuron and arithmetic circuit analysis. DRAM-based CMOS circuits are used to implement the two basic types of neurons. Functionality of basic type neurons is proved using the SPICE simulations. The motif improved adder and the comparator, as compared to conventional Boolean logic design, are much more reliable with lower leakage, and smaller silicon area. This leads to the conclusion that SNP system could provide a more promising solution for reliable computation than the conventional Boolean logic.
ContributorsAn, Pei (Author) / Cao, Yu (Thesis advisor) / Barnaby, Hugh (Committee member) / Chakrabarti, Chaitali (Committee member) / Arizona State University (Publisher)
Created2013
152259-Thumbnail Image.png
Description
Synchronous buck converters have become the obvious choice of design for high efficiency voltage down-conversion applications and find wide scale usage in today's IC industry. The use of digital control in synchronous buck converters is becoming increasingly popular because of its associated advantages over traditional analog counterparts in terms of

Synchronous buck converters have become the obvious choice of design for high efficiency voltage down-conversion applications and find wide scale usage in today's IC industry. The use of digital control in synchronous buck converters is becoming increasingly popular because of its associated advantages over traditional analog counterparts in terms of design flexibility, reduced use of off-chip components, and better programmability to enable advanced controls. They also demonstrate better immunity to noise, enhances tolerance to the process, voltage and temperature (PVT) variations, low chip area and as a result low cost. It enables processing in digital domain requiring a need of analog-digital interfacing circuit viz. Analog to Digital Converter (ADC) and Digital to Analog Converter (DAC). A Digital to Pulse Width Modulator (DPWM) acts as time domain DAC required in the control loop to modulate the ON time of the Power-MOSFETs. The accuracy and efficiency of the DPWM creates the upper limit to the steady state voltage ripple of the DC - DC converter and efficiency in low load conditions. This thesis discusses the prevalent architectures for DPWM in switched mode DC - DC converters. The design of a Hybrid DPWM is presented. The DPWM is 9-bit accurate and is targeted for a Synchronous Buck Converter with a switching frequency of 1.0 MHz. The design supports low power mode(s) for the buck converter in the Pulse Frequency Modulation (PFM) mode as well as other fail-safe features. The design implementation is digital centric making it robust across PVT variations and portable to lower technology nodes. Key target of the design is to reduce design time. The design is tested across large Process (+/- 3σ), Voltage (1.8V +/- 10%) and Temperature (-55.0 °C to 125 °C) and is in the process of tape-out.
ContributorsKumar, Amit (Author) / Bakkaloglu, Bertan (Thesis advisor) / Song, Hongjiang (Committee member) / Kitchen, Jennifer (Committee member) / Arizona State University (Publisher)
Created2013
152166-Thumbnail Image.png
Description
The advent of threshold logic simplifies the traditional Boolean logic to the single level multi-input function. Threshold logic latch (TLL), among implementations of threshold logic, is functionally equivalent to a multi-input function with an edge triggered flip-flop, which stands out to improve area and both dynamic and leakage power consumption,

The advent of threshold logic simplifies the traditional Boolean logic to the single level multi-input function. Threshold logic latch (TLL), among implementations of threshold logic, is functionally equivalent to a multi-input function with an edge triggered flip-flop, which stands out to improve area and both dynamic and leakage power consumption, providing an appropriate design alternative. Accordingly, the TLL standard cell library is designed. Through technology mapping, hybrid circuit is generated by absorbing the logic cone backward from each flip-flip to get the smallest remaining feeder. With the scan test methodology adopted, design for testability (DFT) is proposed, including scan element design and scan chain insertion. Test synthesis flow is then introduced, according to the Cadence tool, RTL compiler. Test application is the process of applying vectors and the response analysis, which is mainly about the testbench design. A parameterized generic self-checking Verilog testbench is designed for static fault detection. Test development refers to the fault modeling, and test generation. Firstly, functional truth table test generation on TLL cells is proposed. Before the truth table test of the threshold function, the dependence of sequence of vectors applied, i.e., the dependence of current state on the previous state, should be eliminated. Transition test (dynamic pattern) on all weak inputs is proved to be able to test the reset function, which is supposed to erase the history in the reset phase before every evaluation phase. Remaining vectors in the truth table except the weak inputs are then applied statically (static pattern). Secondly, dynamic patterns for all weak inputs are proposed to detect structural transistor level faults analyzed in the TLL cell, with single fault assumption and stuck-at faults, stuck-on faults, and stuck-open faults under consideration. Containing those patterns, the functional test covers all testable structural faults inside the TLL. Thirdly, with the scope of the whole hybrid netlist, the procedure of test generation is proposed with three steps: scan chain test; test of feeders and other scan elements except TLLs; functional pattern test of TLL cells. Implementation of this procedure is discussed in the automatic test pattern generation (ATPG) chapter.
ContributorsHu, Yang (Author) / Vrudhula, Sarma (Thesis advisor) / Barnaby, Hugh (Committee member) / Yu, Shimeng (Committee member) / Arizona State University (Publisher)
Created2013
151309-Thumbnail Image.png
Description
This thesis describes the design process used in the creation of a two stage cellular power amplifier. A background for understanding amplifier linearity, device properties, and ACLR estimation is provided. An outline of the design goals is given with a focus on linearity with high efficiency. The full design is

This thesis describes the design process used in the creation of a two stage cellular power amplifier. A background for understanding amplifier linearity, device properties, and ACLR estimation is provided. An outline of the design goals is given with a focus on linearity with high efficiency. The full design is broken into smaller elements which are discussed in detail. The main contribution of this thesis is the description of a novel interstage matching network topology for increasing efficiency. Ultimately the full amplifier design is simulated and compared to the measured results and design goals. It was concluded that the design was successful, and used in a commercially available product.
ContributorsSpivey, Erin (Author) / Aberle, James T., 1961- (Thesis advisor) / Kitchen, Jennifer (Committee member) / Ozev, Sule (Committee member) / Arizona State University (Publisher)
Created2012
151985-Thumbnail Image.png
Description
While acceptance towards same-sex marriage is gradually increasing, same-sex marriage is banned in many states within the United States. Laws that prohibit same-sex couples from marrying have been shown to increase feelings of depression, exclusion, and stigma for same-sex attracted individuals. The intention of this study was to explore the

While acceptance towards same-sex marriage is gradually increasing, same-sex marriage is banned in many states within the United States. Laws that prohibit same-sex couples from marrying have been shown to increase feelings of depression, exclusion, and stigma for same-sex attracted individuals. The intention of this study was to explore the effect both pro- and anti-same-sex marriage advertisements have on heterosexual individuals' implicit attitudes towards same-sex couples. It was predicted that exposure to anti-same-sex advertisements would lead to viewing same-sex couples as more unpleasant and heterosexual couples as being more pleasant. However, heterosexual participants who viewed anti-same-sex marriage ads were more likely to rate heterosexual couples as being unpleasant and same-sex couples as pleasant. It is theorized that viewing anti-same-sex marriage advertisements led heterosexual individuals to report heterosexual stimuli as being more unpleasant compared to same-sex stimuli as a form of defensive processing.
ContributorsWalsh, Theodora Michelle (Author) / Newman, Matt (Thesis advisor) / Hall, Deborah (Committee member) / Salerno, Jessica (Committee member) / Arizona State University (Publisher)
Created2013
152044-Thumbnail Image.png
Description
Doppler radar can be used to measure respiration and heart rate without contact and through obstacles. In this work, a Doppler radar architecture at 2.4 GHz and a new signal processing algorithm to estimate the respiration and heart rate are presented. The received signal is dominated by the transceiver noise,

Doppler radar can be used to measure respiration and heart rate without contact and through obstacles. In this work, a Doppler radar architecture at 2.4 GHz and a new signal processing algorithm to estimate the respiration and heart rate are presented. The received signal is dominated by the transceiver noise, LO phase noise and clutter which reduces the signal-to-noise ratio of the desired signal. The proposed architecture and algorithm are used to mitigate these issues and obtain an accurate estimate of the heart and respiration rate. Quadrature low-IF transceiver architecture is adopted to resolve null point problem as well as avoid 1/f noise and DC offset due to mixer-LO coupling. Adaptive clutter cancellation algorithm is used to enhance receiver sensitivity coupled with a novel Pattern Search in Noise Subspace (PSNS) algorithm is used to estimate respiration and heart rate. PSNS is a modified MUSIC algorithm which uses the phase noise to enhance Doppler shift detection. A prototype system was implemented using off-the-shelf TI and RFMD transceiver and tests were conduct with eight individuals. The measured results shows accurate estimate of the cardio pulmonary signals in low-SNR conditions and have been tested up to a distance of 6 meters.
ContributorsKhunti, Hitesh Devshi (Author) / Kiaei, Sayfe (Thesis advisor) / Bakkaloglu, Bertan (Committee member) / Bliss, Daniel (Committee member) / Kitchen, Jennifer (Committee member) / Arizona State University (Publisher)
Created2013