Matching Items (7)
Filtering by

Clear all filters

151506-Thumbnail Image.png
Description
Microbially induced calcium carbonate precipitation (MICP) is attracting increasing attention as a sustainable means of soil improvement. While there are several possible MICP mechanisms, microbial denitrification has the potential to become one of the preferred methods for MICP because complete denitrification does not produce toxic byproducts, readily occurs under anoxic

Microbially induced calcium carbonate precipitation (MICP) is attracting increasing attention as a sustainable means of soil improvement. While there are several possible MICP mechanisms, microbial denitrification has the potential to become one of the preferred methods for MICP because complete denitrification does not produce toxic byproducts, readily occurs under anoxic conditions, and potentially has a greater carbonate yield per mole of organic electron donor than other MICP processes. Denitrification may be preferable to ureolytic hydrolysis, the MICP process explored most extensively to date, as the byproduct of denitrification is benign nitrogen gas, while the chemical pathways involved in hydrolytic ureolysis processes produce undesirable and potentially toxic byproducts such as ammonium (NH4+). This thesis focuses on bacterial denitrification and presents preliminary results of bench-scale laboratory experiments on denitrification as a candidate calcium carbonate precipitation mechanism. The bench-scale bioreactor and column tests, conducted using the facultative anaerobic bacterium Pseudomonas denitrificans, show that calcite can be precipitated from calcium-rich pore water using denitrification. Experiments also explore the potential for reducing environmental impacts and lowering costs associated with denitrification by reducing the total dissolved solids in the reactors and columns, optimizing the chemical matrix, and addressing the loss of free calcium in the form of calcium phosphate precipitate from the pore fluid. The potential for using MICP to sequester radionuclides and metal contaminants that are migrating in groundwater is also investigated. In the sequestration process, divalent cations and radionuclides are incorporated into the calcite structure via substitution, forming low-strontium calcium carbonate minerals that resist dissolution at a level similar to that of calcite. Work by others using the bacterium Sporosarcina pasteurii has suggested that in-situ sequestration of radionuclides and metal contaminants can be achieved through MICP via hydrolytic ureolysis. MICP through bacterial denitrification seems particularly promising as a means for sequestering radionuclides and metal contaminants in anoxic environments due to the anaerobic nature of the process and the ubiquity of denitrifying bacteria in the subsurface.
ContributorsHamdan, Nasser (Author) / Kavazanjian, Edward (Thesis advisor) / Rittmann, Bruce E. (Thesis advisor) / Shock, Everett (Committee member) / Arizona State University (Publisher)
Created2013
190909-Thumbnail Image.png
Description
Dissolved inorganic carbon (DIC) and dissolved organic carbon (DOC) are crucial nutrients for autotrophic and heterotrophic microbial life, respectively, in hydrothermal systems. Biogeochemical processes that control amounts of DIC and DOC in Yellowstone hot springs can be investigated by measuring carbon abundances and respective isotopic values. A decade and a

Dissolved inorganic carbon (DIC) and dissolved organic carbon (DOC) are crucial nutrients for autotrophic and heterotrophic microbial life, respectively, in hydrothermal systems. Biogeochemical processes that control amounts of DIC and DOC in Yellowstone hot springs can be investigated by measuring carbon abundances and respective isotopic values. A decade and a half of field work in 10 regions within Yellowstone National Park and subsequent geochemical lab analyses reveal that sulfate-dominant acidic regions have high DOC (Up to 57 ppm C) and lower DIC (up to 50 ppm C) compared to neutral-chloride regions with low DOC (< 2 ppm C) and higher DIC (up to 100 ppm C). Abundances and isotopic data suggest that sedimentary rock erosion by acidic hydrothermal fluids, fresh snow-derived meteoric water, and exogenous carbon input allowed by local topography may affect DOC levels. Evaluating the isotopic compositions of DIC and DOC in hydrothermal fluids gives insight on the geology and microbial life in the subsurface between different regions. DIC δ13C values range from -4‰ to +5‰ at pH 5-9 and from -10‰ to +3‰ at pH 2-5 with several springs lower than -10‰. DOC δ13C values parkwide range from -10‰ to -30‰. Within this range, neutral-chloride regions in the Lower Geyser Basin have lighter isotopes than sulfate-dominant acidic regions. In hot springs with elevated levels of DOC, the range only varies between -20‰ and -26‰ which may be caused by local exogenous organic matter runoff. Combining other geochemical measurements, such as differences in chloride and sulfate concentrations, demonstrates that some regions contain mixtures of multiple fluids moving through the complex hydrological system in the subsurface. The mixing of these fluids may account for increased levels of DOC in meteoric sulfate-dominant acidic regions. Ultimately, the foundational values of dissolved carbon and their isotopic composition is provided in a parkwide study, so results can be combined with future studies that apply different sequencing analyses to understand specific biogeochemical cycling and microbial communities that occur in individual hot springs.
ContributorsBarnes, Tanner (Author) / Shock, Everett (Thesis advisor) / Meyer-Dombard, D'Arcy (Committee member) / Hartnett, Hilairy (Committee member) / Arizona State University (Publisher)
Created2023
157532-Thumbnail Image.png
Description
Ideas from coding theory are employed to theoretically demonstrate the engineering of mutation-tolerant genes, genes that can sustain up to some arbitrarily chosen number of mutations and still express the originally intended protein. Attention is restricted to tolerating substitution mutations. Future advances in genomic engineering will make possible the ability

Ideas from coding theory are employed to theoretically demonstrate the engineering of mutation-tolerant genes, genes that can sustain up to some arbitrarily chosen number of mutations and still express the originally intended protein. Attention is restricted to tolerating substitution mutations. Future advances in genomic engineering will make possible the ability to synthesize entire genomes from scratch. This presents an opportunity to embed desirable capabilities like mutation-tolerance, which will be useful in preventing cell deaths in organisms intended for research or industrial applications in highly mutagenic environments. In the extreme case, mutation-tolerant genes (mutols) can make organisms resistant to retroviral infections.

An algebraic representation of the nucleotide bases is developed. This algebraic representation makes it possible to convert nucleotide sequences into algebraic sequences, apply mathematical ideas and convert results back into nucleotide terms. Using the algebra developed, a mapping is found from the naturally-occurring codons to an alternative set of codons which makes genes constructed from them mutation-tolerant, provided no more than one substitution mutation occurs per codon. The ideas discussed naturally extend to finding codons that can tolerate t arbitrarily chosen number of mutations per codon. Finally, random substitution events are simulated in both a wild-type green fluorescent protein (GFP) gene and its mutol variant and the amino acid sequence expressed from each post-mutation is compared with the amino acid sequence pre-mutation.

This work assumes the existence of synthetic protein-assembling entities that function like tRNAs but can read k nucleotides at a time, with k greater than or equal to 5. The realization of this assumption is presented as a challenge to the research community.
ContributorsAmpofo, Prince Kwame (Author) / Tian, Xiaojun (Thesis advisor) / Kiani, Samira (Committee member) / Kuang, Yang (Committee member) / Arizona State University (Publisher)
Created2019
153956-Thumbnail Image.png
Description
Natural variations in 238U/235U of marine carbonates might provide a useful way of constraining redox conditions of ancient environments. In order to evaluate the reliability of this proxy, we conducted aragonite and calcite coprecipitation experiments at pH ~7.5 and ~ 8.5 to study possible U isotope fractionation during incorporation into

Natural variations in 238U/235U of marine carbonates might provide a useful way of constraining redox conditions of ancient environments. In order to evaluate the reliability of this proxy, we conducted aragonite and calcite coprecipitation experiments at pH ~7.5 and ~ 8.5 to study possible U isotope fractionation during incorporation into these minerals.

Small but significant U isotope fractionation was observed in aragonite experiments at pH ~ 8.5, with heavier U in the solid phase. 238U/235U of dissolved U in these experiments can be fit by Rayleigh fractionation curves with fractionation factors of 1.00007+0.00002/-0.00003, 1.00005 ± 0.00001, and 1.00003 ± 0.00001. In contrast, no resolvable U isotope fractionation was observed in an aragonite experiment at pH ~7.5 or in calcite experiments at either pH. Equilibrium isotope fractionation among different aqueous U species is the most likely explanation for these findings. Certain charged U species are preferentially incorporated into calcium carbonate relative to the uncharged U species Ca2UO2(CO3)3(aq), which we hypothesize has a lighter equilibrium U isotope composition than most of the charged species. According to this hypothesis, the magnitude of U isotope fractionation should scale with the fraction of dissolved U that is present as Ca2UO2(CO3)3 (aq). This expectation is confirmed by equilibrium speciation modeling of our experiments. Theoretical calculation of the U isotope fractionation factors between different U species could further test this hypothesis and our proposed fractionation mechanism.

These findings suggest that U isotope variations in ancient carbonates could be controlled by changes in the aqueous speciation of seawater U, particularly changes in seawater pH, PCO2, [Ca], or [Mg] concentrations. In general, these effects are likely to be small (<0.13 ‰), but are nevertheless potentially significant because of the small natural range of variation of 238U/235U.
ContributorsChen, Xinming (Author) / Anbar, Ariel (Thesis advisor) / Herckes, Pierre (Committee member) / Shock, Everett (Committee member) / Arizona State University (Publisher)
Created2015
158279-Thumbnail Image.png
Description
Organic compounds are influenced by hydrothermal conditions in both marine and terrestrial environments. Sedimentary organic reservoirs make up the largest share of organic carbon in the carbon cycle, leading to petroleum generation and to chemoautotrophic microbial communities. There have been numerous studies on the reactivity of organic compounds in water

Organic compounds are influenced by hydrothermal conditions in both marine and terrestrial environments. Sedimentary organic reservoirs make up the largest share of organic carbon in the carbon cycle, leading to petroleum generation and to chemoautotrophic microbial communities. There have been numerous studies on the reactivity of organic compounds in water at elevated temperatures, but these studies rarely explore the consequences of inorganic solutes in hydrothermal fluids. The experiments in this thesis explore new reaction pathways of organic compounds mediated by aqueous and solid phase metals, mainly Earth-abundant copper. These experiments show that copper species have the potential to oxidize benzene and toluene, which are typically viewed as unreactive. These pathways add to the growing list of known organic transformations that are possible in natural hydrothermal systems. In addition to the characterization of reactions in natural systems, there has been recent interest in using hydrothermal conditions to facilitate organic transformations that would be useful in an applied, industrial or synthetic setting. This thesis identifies two sets of conditions that may serve as alternatives to commonplace industrial processes. The first process is the oxidation of benzene with copper to form phenol and chlorobenzene. The second is the copper mediated dehalogenation of aryl halides. Both of these processes apply the concepts of geomimicry by carrying out organic reactions under Earth-like conditions. Only water and copper are needed to implement these processes and there is no need for exotic catalysts or toxic reagents.
ContributorsLoescher, Grant (Author) / Shock, Everett (Thesis advisor) / Hartnett, Hilairy (Committee member) / Gould, Ian (Committee member) / Arizona State University (Publisher)
Created2020
158268-Thumbnail Image.png
Description
The analysis focuses on a two-population, three-dimensional model that attempts to accurately model the growth and diffusion of glioblastoma multiforme (GBM), a highly invasive brain cancer, throughout the brain. Analysis into the sensitivity of the model to

changes in the diffusion, growth, and death parameters was performed, in order to find

The analysis focuses on a two-population, three-dimensional model that attempts to accurately model the growth and diffusion of glioblastoma multiforme (GBM), a highly invasive brain cancer, throughout the brain. Analysis into the sensitivity of the model to

changes in the diffusion, growth, and death parameters was performed, in order to find a set of parameter values that accurately model observed tumor growth for a given patient. Additional changes were made to the diffusion parameters to account for the arrangement of nerve tracts in the brain, resulting in varying rates of diffusion. In general, small changes in the growth rates had a large impact on the outcome of the simulations, and for each patient there exists a set of parameters that allow the model to simulate a tumor that matches observed tumor growth in the patient over a period of two or three months. Furthermore, these results are more accurate with anisotropic diffusion, rather than isotropic diffusion. However, these parameters lead to inaccurate results for patients with tumors that undergo no observable growth over the given time interval. While it is possible to simulate long-term tumor growth, the simulation requires multiple comparisons to available MRI scans in order to find a set of parameters that provide an accurate prognosis.
ContributorsTrent, Austin Lee (Author) / Kostelich, Eric (Thesis advisor) / Gumel, Abba (Committee member) / Kuang, Yang (Committee member) / Arizona State University (Publisher)
Created2020
158829-Thumbnail Image.png
Description
Efforts to treat prostate cancer have seen an uptick, as the world’s most commoncancer in men continues to have increasing global incidence. Clinically, metastatic
prostate cancer is most commonly treated with hormonal therapy. The idea behind
hormonal therapy is to reduce androgen production, which prostate cancer cells
require for growth. Recently, the exploration

Efforts to treat prostate cancer have seen an uptick, as the world’s most commoncancer in men continues to have increasing global incidence. Clinically, metastatic
prostate cancer is most commonly treated with hormonal therapy. The idea behind
hormonal therapy is to reduce androgen production, which prostate cancer cells
require for growth. Recently, the exploration of the synergistic effects of the drugs
used in hormonal therapy has begun. The aim was to build off of these recent
advancements and further refine the synergistic drug model. The advancements I
implement come by addressing biological shortcomings and improving the model’s
internal mechanistic structure. The drug families being modeled, anti-androgens,
and gonadotropin-releasing hormone analogs, interact with androgen production in a
way that is not completely understood in the scientific community. Thus the models
representing the drugs show progress through their ability to capture their effect
on serum androgen. Prostate-specific antigen is the primary biomarker for prostate
cancer and is generally how population models on the subject are validated. Fitting
the model to clinical data and comparing it to other clinical models through the
ability to fit and forecast prostate-specific antigen and serum androgen is how this
improved model achieves validation. The improved model results further suggest that
the drugs’ dynamics should be considered in adaptive therapy for prostate cancer.
ContributorsReckell, Trevor (Author) / Kostelich, Eric (Thesis advisor) / Kuang, Yang (Committee member) / Mahalov, Alex (Committee member) / Arizona State University (Publisher)
Created2020