Matching Items (2)
Filtering by

Clear all filters

154601-Thumbnail Image.png
Description
The emergence of invasive non-Typhoidal Salmonella (iNTS) infections belonging to sequence type (ST) 313 are associated with severe bacteremia and high mortality in sub-Saharan Africa. Distinct features of ST313 strains include resistance to multiple antibiotics, extensive genomic degradation, and atypical clinical diagnosis including bloodstream infections, respiratory symptoms, and fever. Herein,

The emergence of invasive non-Typhoidal Salmonella (iNTS) infections belonging to sequence type (ST) 313 are associated with severe bacteremia and high mortality in sub-Saharan Africa. Distinct features of ST313 strains include resistance to multiple antibiotics, extensive genomic degradation, and atypical clinical diagnosis including bloodstream infections, respiratory symptoms, and fever. Herein, I report the use of dynamic bioreactor technology to profile the impact of physiological fluid shear levels on the pathogenesis-related responses of ST313 pathovar, 5579. I show that culture of 5579 under these conditions induces profoundly different pathogenesis-related phenotypes than those normally observed when cultures are grown conventionally. Surprisingly, in response to physiological fluid shear, 5579 exhibited positive swimming motility, which was unexpected, since this strain was initially thought to be non-motile. Moreover, fluid shear altered the resistance of 5579 to acid, oxidative and bile stress, as well as its ability to colonize human colonic epithelial cells. This work leverages from and advances studies over the past 16 years in the Nickerson lab, which are at the forefront of bacterial mechanosensation and further demonstrates that bacterial pathogens are “hardwired” to respond to the force of fluid shear in ways that are not observed during conventional culture, and stresses the importance of mimicking the dynamic physical force microenvironment when studying host-pathogen interactions. The results from this study lay the foundation for future work to determine the underlying mechanisms operative in 5579 that are responsible for these phenotypic observations.
ContributorsCastro, Christian (Author) / Nickerson, Cheryl A. (Thesis advisor) / Ott, C. Mark (Committee member) / Roland, Kenneth (Committee member) / Barrila, Jennifer (Committee member) / Arizona State University (Publisher)
Created2016
161497-Thumbnail Image.png
Description
The Pathways of Distinction Analysis (PoDA) program calculates relationships between a given group of genes contained within a pathway, and a disease state. It was used here to investigate liver cancer, and to explore how genetic variability may contribute to the different rates of development of the disease in males

The Pathways of Distinction Analysis (PoDA) program calculates relationships between a given group of genes contained within a pathway, and a disease state. It was used here to investigate liver cancer, and to explore how genetic variability may contribute to the different rates of development of the disease in males and females. The goal of the study was to identify germline variation that differs by sex in hepatocellular carcinoma. Using the program, multiple pathways and genes were identified to have significant differences in their relationship to liver cancer in males and females. In animal studies, the genes which were identified using the PoDA analysis have been shown to impact liver cancer, often with different results for males and females. While these genes are often the focus in animal models, they are absent from current Genome Wide Association Studies (GWAS) catalogs for humans. By working to bridge the results of animal studies and human studies, the results help to identify the causes of liver cancer, and more specifically, the reason the disease affects males at much higher rates. The differences in pathways identified to be significant for the two sexes indicate the germline variance may play sex-specific roles in the development of hepatocellular carcinoma. Additionally, these results reinforce the capacity of the PoDA analysis to identify genes that may be missed by more traditional GWAS methods. This study lays the groundwork for further investigations into the identified genes and pathways, and how they behave differently within males and females.
ContributorsOlson, Erik Jon (Author) / Buetow, Kenneth (Thesis advisor) / Wilson, Melissa (Committee member) / Cartwright, Reed (Committee member) / Arizona State University (Publisher)
Created2021