Matching Items (3)
Filtering by

Clear all filters

156658-Thumbnail Image.png
Description
Education through field exploration is fundamental in geoscience. But not all students enjoy equal access to field-based learning because of time, cost, distance, ability, and safety constraints. At the same time, technological advances afford ever more immersive, rich, and student-centered virtual field experiences. Virtual field trips may be the only

Education through field exploration is fundamental in geoscience. But not all students enjoy equal access to field-based learning because of time, cost, distance, ability, and safety constraints. At the same time, technological advances afford ever more immersive, rich, and student-centered virtual field experiences. Virtual field trips may be the only practical options for most students to explore pedagogically rich but inaccessible places. A mixed-methods research project was conducted on an introductory and an advanced geology class to explore the implications of learning outcomes of in-person and virtual field-based instruction at Grand Canyon National Park. The study incorporated the Great Unconformity in the Grand Canyon, a 1.2 billion year break in the rock record; the Trail of Time, an interpretive walking timeline; and two immersive, interactive virtual field trips (iVFTs). The in-person field trip (ipFT) groups collectively explored the canyon and took an instructor-guided inquiry hike along the interpretive Trail of Time from rim level, while iVFT students individually explored the canyon and took a guided-inquiry virtual tour of Grand Canyon geology from river level. High-resolution 360° spherical images anchor the iVFTs and serve as a framework for programmed overlays that enable interactivity and allow the iVFT to provide feedback in response to student actions. Students in both modalities received pre- and post-trip Positive and Negative Affect Schedules (PANAS). The iVFT students recorded pre- to post-trip increases in positive affect (PA) scores and decreases in negative (NA) affect scores, representing an affective state conducive to learning. Pre- to post-trip mean scores on concept sketches used to assess visualization and geological knowledge increased for both classes and modalities. However, the iVFT pre- to post-trip increases were three times greater (statistically significant) than the ipFT gains. Both iVFT and ipFT students scored 92-98% on guided-inquiry worksheets completed during the trips, signifying both met learning outcomes. Virtual field trips do not trump traditional in-person field work, but they can meet and/or exceed similar learning objectives and may replace an inaccessible or impractical in-person field trip.
ContributorsRuberto, Thomas (Author) / Semken, Steve (Thesis advisor) / Anbar, Ariel (Committee member) / Brownell, Sara (Committee member) / Arizona State University (Publisher)
Created2018
154953-Thumbnail Image.png
Description
Intervertebral Disc Degeneration (IVDD) is a complex phenomenon characterizing the desiccation and structural compromise of the primary joint in the human spine. The intervertebral disc (IVD) serves to connect vertebral bodies, cushion shock, and allow for flexion and extension of the vertebral column. Often presenting in the 4th or 5th

Intervertebral Disc Degeneration (IVDD) is a complex phenomenon characterizing the desiccation and structural compromise of the primary joint in the human spine. The intervertebral disc (IVD) serves to connect vertebral bodies, cushion shock, and allow for flexion and extension of the vertebral column. Often presenting in the 4th or 5th decades of life as low back pain, this disease was originally believed to be the result of natural “wear and tear” coupled with repetitive mechanical insult, and as such most studies focus on patients between 40 and 50 years of age. Research over the past two decades, however, has demonstrated that environmental factors have only a modest effect on disc degeneration, with genetic influences playing a much more substantial role. Extensive research has focused on this process, though definitive risk factors and a clear pathophysiology have proven elusive. The aim of this study was to assemble a cohort of patients exhibiting definitive signs of degeneration who were well below the average age of presentation, with minimal or no exposure to suspected environmental risk factors and to conduct a targeted genome analysis in an attempt to elucidate a common genetic component. Through whole genome sequencing and analysis, the results corroborated findings in a previous study, as well as demonstrated a potential connection and influence between mutations found in IVD structural or functional genes, and the provocation of IVDD. Though the sample size was limited in scale and age, these findings suggest that further IVDD research into the association of variants in collagen, aggrecan and the insulin-like growth factor receptor genes of young patients with an early presentation of disc degeneration and minimal exposure to suspected risk factors is merited.
ContributorsFulton, Travis (Author) / Liebig, Juergen (Thesis advisor) / Neisewander, Janet (Committee member) / Theodore, Nicholas (Committee member) / Arizona State University (Publisher)
Created2016
154733-Thumbnail Image.png
Description
Calls for changes in science education over the last several decades have contributed to a changing landscape of undergraduate life science education. As opposed to simply lecturing at students and expecting them to recite science facts, there has been a strong push to make systemic changes so that students not

Calls for changes in science education over the last several decades have contributed to a changing landscape of undergraduate life science education. As opposed to simply lecturing at students and expecting them to recite science facts, there has been a strong push to make systemic changes so that students not only know pertinent science content, but also walk away with critical science process skills. There have been suggestions to create environments that focus on goals such as evaluating scientific evidence and explanations, understanding the development of scientific knowledge, and participating in scientific practice and discourse. As a part of the call for increases in student participation in science practice, we’ve seen suggestions to increase student exposure to the tools, techniques, and published research within various science fields. The use of primary scientific literature in the classroom is documented as being a tool to introduce students to the nature of scientific reasoning, experimental design, and knowledge creation and transformation. Many of the current studies on primary scientific literature in undergraduate courses report on intensive course designs in which students interact with the material with very specific goals, as outlined by the authors and researchers. We know less about the practices that take place in typical undergraduate settings. This exploratory study looks at information provided by a national sample of faculty that alludes to what sort of practices are taking place and the reasoning for doing so. Through analysis of both closed-ended and open-ended survey questions we have found that faculty are engaging students with primary scientific literature for many reasons and in a variety of ways. We have also attempted to characterize the way in which faculty view the body of scientific literature, as members of the research community. We discuss the implications of faculty views on the utility and value of the body of scientific literature. We also argue that those perceptions inform how the material is used in the undergraduate classroom.
ContributorsWagoner, Nevada (Author) / Brownell, Sara (Thesis advisor) / Maienschein, Jane (Thesis advisor) / Ellison, Karin (Committee member) / Arizona State University (Publisher)
Created2016