Matching Items (11)
Filtering by

Clear all filters

149725-Thumbnail Image.png
Description
Infections caused by the Hepatitis C Virus (HCV) are very common worldwide, affecting up to 3% of the population. Chronic infection of HCV may develop into liver cirrhosis and liver cancer which is among the top five of the most common cancers. Therefore, vaccines against HCV are under intense study

Infections caused by the Hepatitis C Virus (HCV) are very common worldwide, affecting up to 3% of the population. Chronic infection of HCV may develop into liver cirrhosis and liver cancer which is among the top five of the most common cancers. Therefore, vaccines against HCV are under intense study in order to prevent HCV from harming people's health. The envelope protein 2 (E2) of HCV is thought to be a promising vaccine candidate because it can directly bind to a human cell receptor and plays a role in viral entry. However, the E2 protein production in cells is inefficient due to its complicated matured structure. Folding of E2 in the endoplasmic reticulum (ER) is often error-prone, resulting in production of aggregates and misfolded proteins. These incorrect forms of E2 are not functional because they are not able to bind to human cells and stimulate antibody response to inhibit this binding. This study is aimed to overcome the difficulties of HCV E2 production in plant system. Protein folding in the ER requires great assistance from molecular chaperones. Thus, in this study, two molecular chaperones in the ER, calreticulin and calnexin, were transiently overexpressed in plant leaves in order to facilitate E2 folding and production. Both of them showed benefits in increasing the yield of E2 and improving the quality of E2. In addition, poorly folded E2 accumulated in the ER may cause stress in the ER and trigger transcriptional activation of ER molecular chaperones. Therefore, a transcription factor involved in this pathway, named bZIP60, was also overexpressed in plant leaves, aiming at up-regulating a major family of molecular chaperones called BiP to assist protein folding. However, our results showed that BiP mRNA levels were not up-regulated by bZIP60, but they increased in response to E2 expression. The Western blot analysis also showed that overexpression of bZIP60 had a small effect on promoting E2 folding. Overall, this study suggested that increasing the level of specific ER molecular chaperones was an effective way to promote HCV E2 protein production and maturation.
ContributorsHong, Fan (Author) / Mason, Hugh (Thesis advisor) / Gaxiola, Roberto (Committee member) / Chang, Yung (Committee member) / Chen, Qiang (Committee member) / Arizona State University (Publisher)
Created2011
161592-Thumbnail Image.png
Description
Globally, about two-thirds of the population is latently infected with herpes simplex virus type 1 (HSV-1). HSV-1 is a large double stranded DNA virus with a genome size of ~150kbp. Small defective genomes, which minimally contain an HSV-1 origin of replication and packaging signal, arise naturally via recombination during viral

Globally, about two-thirds of the population is latently infected with herpes simplex virus type 1 (HSV-1). HSV-1 is a large double stranded DNA virus with a genome size of ~150kbp. Small defective genomes, which minimally contain an HSV-1 origin of replication and packaging signal, arise naturally via recombination during viral DNA replication. These small defective genomes can be mimicked by constructing a bacterial plasmid containing the HSV-1 origin of replication and packaging signal, transfecting these recombinant plasmids into mammalian cells, and infecting with a replicating helper virus. The absence of most viral genes in the amplicon vector allows large pieces of foreign DNA (up to 150kbp) to be incorporated. The HSV-1 amplicon is replicated and packaged by the helper virus to form HSV-1 particles containing the amplicon DNA. We constructed a novel HSV-1 amplicon vector system containing lambda phage-derived attR sites to facilitate insertion of transgenes by Invitrogen Gateway recombination. To demonstrate that the amplicon vectors work as expected, we packaged the vector constructs expressing Emerald GFP using the replication-competent helper viruses OK-14 or HSV-mScartlet-I-UL25 in Vero cells and demonstrate that the vector stock can subsequently transduce and express Emerald GFP. In further work, we will insert transgenes into the amplicon vector using Invitrogen Gateway recombination to study their functionality.
ContributorsVelarde, Kimberly (Author) / Hogue, Ian B (Thesis advisor) / Manfredsson, Fredric (Committee member) / Sandoval, Ivette (Committee member) / Varsani, Arvind (Committee member) / Arizona State University (Publisher)
Created2021
161939-Thumbnail Image.png
Description
Traditional Reinforcement Learning (RL) assumes to learn policies with respect to reward available from the environment but sometimes learning in a complex domain requires wisdom which comes from a wide range of experience. In behavior based robotics, it is observed that a complex behavior can be described by a combination

Traditional Reinforcement Learning (RL) assumes to learn policies with respect to reward available from the environment but sometimes learning in a complex domain requires wisdom which comes from a wide range of experience. In behavior based robotics, it is observed that a complex behavior can be described by a combination of simpler behaviors. It is tempting to apply similar idea such that simpler behaviors can be combined in a meaningful way to tailor the complex combination. Such an approach would enable faster learning and modular design of behaviors. Complex behaviors can be combined with other behaviors to create even more advanced behaviors resulting in a rich set of possibilities. Similar to RL, combined behavior can keep evolving by interacting with the environment. The requirement of this method is to specify a reasonable set of simple behaviors. In this research, I present an algorithm that aims at combining behavior such that the resulting behavior has characteristics of each individual behavior. This approach has been inspired by behavior based robotics, such as the subsumption architecture and motor schema-based design. The combination algorithm outputs n weights to combine behaviors linearly. The weights are state dependent and change dynamically at every step in an episode. This idea is tested on discrete and continuous environments like OpenAI’s “Lunar Lander” and “Biped Walker”. Results are compared with related domains like Multi-objective RL, Hierarchical RL, Transfer learning, and basic RL. It is observed that the combination of behaviors is a novel way of learning which helps the agent achieve required characteristics. A combination is learned for a given state and so the agent is able to learn faster in an efficient manner compared to other similar approaches. Agent beautifully demonstrates characteristics of multiple behaviors which helps the agent to learn and adapt to the environment. Future directions are also suggested as possible extensions to this research.
ContributorsVora, Kevin Jatin (Author) / Zhang, Yu (Thesis advisor) / Yang, Yezhou (Committee member) / Praharaj, Sarbeswar (Committee member) / Arizona State University (Publisher)
Created2021
168508-Thumbnail Image.png
Description
The growing field of immunotherapy has generated numerous promising diseasetreatment platforms in recent years. By utilizing the innate capabilities of the immune system, these treatments have provided a unique, simplistic approach to targeting and eliminating cancer. Among these, the bispecific T cell engager (BiTEÒ) model has demonstrated potential as a

The growing field of immunotherapy has generated numerous promising diseasetreatment platforms in recent years. By utilizing the innate capabilities of the immune system, these treatments have provided a unique, simplistic approach to targeting and eliminating cancer. Among these, the bispecific T cell engager (BiTEÒ) model has demonstrated potential as a treatment capable of bringing immune cells into contact with cancer cells of interest and initiating perforin/granzyme-mediated cell death of the tumor. While standard BiTE platforms rely on targeting a tumor-specific receptor via its complementary antibody, no such universal receptor has been reported for glioblastoma (GBM), the most common and aggressive primary brain tumor which boasts a median survival of only 15 months. In addition to its dismal prognosis, GBM deploys several immune-evasion tactics that further complicate treatment and make targeted therapy difficult. However, it has been reported that chlorotoxin, a 36-amino acid peptide found in the venom of Leiurus quinquestriatus, binds specifically to glioma cells while not binding healthy tissue in humans. This specificity positions chlorotoxin as a prime candidate to act as a GBM-targeting moiety as one half of an immunotherapeutic treatment platform resembling the BiTE design which I describe here. Named ACDClx∆15, this fusion protein tethers a truncated chlorotoxin molecule to the variable region of a monoclonal antibody targeted to CD3ε on both CD8+ and CD4+ T cells and is theorized to bring T cells into contact with GBM in order to stimulate an artificial immune response against the tumor. Here I describe the design and production of ACDClx∆15 and test its ability to bind and activate T lymphocytes against murine GBM in vitro. ACDClx∆15 was shown to bind both GBM and T cells without binding healthy cells in vitro but did not demonstrate the ability to activate T cells in the presence of GBM.
ContributorsSchaefer, Braeden Scott (Author) / Mor, Tsafrir (Thesis advisor) / Mason, Hugh (Committee member) / Blattman, Joseph (Committee member) / Arizona State University (Publisher)
Created2021
187353-Thumbnail Image.png
Description
Despite the prevalence of coyotes (Canis latrans) little is known about the viruses associated with this species. To assess the extent of viral research that has been conducted on coyotes, a literature review was performed. Over the last six decades, there have been many viruses that have been identified infecting

Despite the prevalence of coyotes (Canis latrans) little is known about the viruses associated with this species. To assess the extent of viral research that has been conducted on coyotes, a literature review was performed. Over the last six decades, there have been many viruses that have been identified infecting coyotes. The pathology of some cases implies that infection is rare and lethal while others have been demonstrated to be endemic to coyotes. In addition, the majority of the prior analyses were done through serological assays that were limited to investigating target viruses. To help expand what is known about coyote-virus dynamics, viral assays were conducted on coyote scat. The samples were collected as part of transects established along the Salt River near Phoenix, Arizona, United States (USA). The recovered viral genomes were clustered with other deoxynucleic acid (DNA) viruses and analyzed to determine phylogeny and genetic identity. From the recovered viral genomes, there are two novel circoviruses, one novel naryavirus, five unclassified cressdnaviruses, and two previously identified species of anelloviruses from the Wawtorquevirus genus. For these viruses, new phylogenies for their groups and pairwise identity plots have been generated. These figures give insight into the potential hosts and the evolutionary history. In the case of the anelloviruses, they likely derived from a wood rat (Neotoma) host, given the anellovirus family’s host specificity and its similarity to another viral genome derived from a wood rat in Arizona, USA. Of the recovered circovirus genomes, one is associated with a viral isolate collected from a dust sample in Arizona, USA. The second circovirus species identified is within a clade that consists of rodent associated circoviruses and canine circovirus. Other recovered genomes expand clusters of unclassified cressdnaviruses. The recovered genomes support further genomic analysis. These findings help support the notion that there is a wealth of viral information to be identified from animals like coyotes. By understanding the viruses that coyotes are associated with, it is possible to better understand the viral impact on the urban environment, domesticated animals, and wildlife in general.
ContributorsHess, Savage Cree (Author) / Varsani, Arvind (Thesis advisor) / Kraberger, Simona (Committee member) / Upham, Nathan S (Committee member) / Arizona State University (Publisher)
Created2023
187397-Thumbnail Image.png
DescriptionA
ContributorsLund, Michael (Author) / Varsani, Arvind (Thesis advisor) / Upham, Nathan (Committee member) / Harris, Robin (Committee member) / Arizona State University (Publisher)
Created2023
156732-Thumbnail Image.png
Description
Necrotic enteritis (NE) is caused by type A strains of the bacterium Clostridium perfringens, leading to an estimated 2 billion dollar global economic loss in the poultry industry annually. Traditionally, NE has been effectively controlled by antibiotics added to the diet of poultry. Concerns about increasing antibiotic resistance of poultry

Necrotic enteritis (NE) is caused by type A strains of the bacterium Clostridium perfringens, leading to an estimated 2 billion dollar global economic loss in the poultry industry annually. Traditionally, NE has been effectively controlled by antibiotics added to the diet of poultry. Concerns about increasing antibiotic resistance of poultry and human based pathogens have led to the consideration of alternative approaches for controlling disease, such as vaccination. NE causing strains of C. perfringens produce two major toxins, α-toxin and NetB. Immune responses against either toxin can provide partial protection against NE. We have developed a fusion protein combining a non-toxic carboxy-terminal domain of the α-toxin (PlcC) and an attenuated, mutant form of NetB (NetB-W262A) for use as a vaccine antigen to immunize poultry against NE. We utilized a DNA sequence that was codon-optimized for Nicotiana benthamiana to enable high levels of expression. The 6-His tagged PlcC-NetB fusion protein was synthesized in N. benthamiana using a geminiviral replicon transient expression system. The fusion protein was purified by metal affinity chromatography and used to immunize broiler birds. Immunized birds produced a strong serum IgY response against both the plant produced PlcC-NetB protein and against bacterially produced His-PlcC and His-NetB. However, the PlcC-NetB fusion had antibody titers four times that of the bacterially produced toxoids alone. Immunized birds were significantly protected against a subsequent in-feed challenge with virulent C. perfringens when treated with the fusion protein. These results indicate that a plant-produced PlcC-NetB is a promising vaccine candidate for controlling NE in poultry.
ContributorsHunter, Joseph G (Author) / Mason, Hugh (Thesis advisor) / Mor, Tsafrir (Committee member) / Blattman, Joseph (Committee member) / Arizona State University (Publisher)
Created2018
157580-Thumbnail Image.png
Description
Arachnids belong to the phylum Arthropoda, the largest phylum in the animal kingdom. Ticks are blood-feeding arachnids that vector numerous pathogens of significant medical and veterinary importance, while scorpions have become a common concern in urban desert cities due to the high level of toxicity in their venom. To date,

Arachnids belong to the phylum Arthropoda, the largest phylum in the animal kingdom. Ticks are blood-feeding arachnids that vector numerous pathogens of significant medical and veterinary importance, while scorpions have become a common concern in urban desert cities due to the high level of toxicity in their venom. To date, viruses associated with arachnids have been under sampled and understudied. Here viral metagenomics was used to explore the diversity of viruses present in ticks and scorpions. American dog ticks (Dermacentor variabilis) and blacklegged ticks (Ixodes scapularis) were collected in Pennsylvania while one hairy scorpion (Hadrurus arizonensis) and four bark scorpions (Centruroides sculpturatus) were collected in Phoenix. Novel viral genomes described here belong to the families Polyomaviridae, Anelloviridae, Genomoviridae, and a newly proposed family, Arthropolviridae.

Polyomaviruses are non-enveloped viruses with a small, circular double-stranded DNA (dsDNA) genomes that have been identified in a variety of mammals, birds and fish and are known to cause various diseases. Arthropolviridae is a proposed family of circular, large tumor antigen encoding dsDNA viruses that have a unidirectional genome organization. Genomoviruses and anelloviruses are ssDNA viruses that have circular genomes ranging in size from 2–2.4 kb and 2.1–3.8 kb, respectively. Genomoviruses are ubiquitous in the environment, having been identified in a wide range of animal, plant and environmental samples, while anelloviruses have been associated with a plethora of animals.

Here, 16 novel viruses are reported that span four viral families. Eight novel polyomaviruses were recovered from bark scorpions, three arthropolviruses were recovered from dog ticks and one arthropolvirus from a hairy scorpion. Viruses belonging to the families Polyomaviridae and Arthropolviridae are highly divergent. This is the first more extensive study of these viruses in arachnids. Three genomoviruses were recovered from both dog and deer ticks and one anellovirus was recovered from deer ticks, which are the first records of these viruses being recovered from ticks. This work highlights the diversity of dsDNA and ssDNA viruses in the arachnid population and emphasizes the importance of performing viral surveys on these populations.
ContributorsSchmidlin, Kara (Author) / Varsani, Arvind (Thesis advisor) / Van Doorslaer, Koenraad (Committee member) / Stenglein, Mark (Committee member) / Arizona State University (Publisher)
Created2019
153827-Thumbnail Image.png
Description
Vaccines against the arthropod-borne dengue virus (DENV) are still commercially nonexistent. A subunit immunization strategy may be of value, especially if a safe viral vector acts as a biologically active adjuvant. The DENV envelope protein (E), the main target for neutralizing immune responses, has three conformational domains. The immunoglobulin-like and

Vaccines against the arthropod-borne dengue virus (DENV) are still commercially nonexistent. A subunit immunization strategy may be of value, especially if a safe viral vector acts as a biologically active adjuvant. The DENV envelope protein (E), the main target for neutralizing immune responses, has three conformational domains. The immunoglobulin-like and independently folding domain III (DIII) contains epitopes that elicit highly specific neutralizing antibodies. The hepatitis B small surface antigen (HBsAg, S) was used as a scaffold to display DENV 2 DIII on a virus-like particle (VLP). A measles virus (MV) was engineered to vector HBsAg and the hybrid glycoprotein DIII-HBsAg in two different loci (DIII-S). Despite the relatively deleterious effect on replication caused by the insertion of two transcription cassettes, the recombinant virus MVvac2(DIII-S,S)P induced the secretion of DIII-S hybrid VLP with a similar sucrose density as HBsAg particles (1.10-1.12g/ml) and peaked at 48 h post-infection producing 1.3x106 TCID50/ml infectious MV units in vitro. A second recombinant virus, MVvac2(DIII-S)N, was engineered to vector only the hybrid DIII-S. However, it did not induce the secretion of hybrid HBsAg particles in the supernatant of infected cells. The immunogenicity of the recombinant viruses was tested in a MV-susceptible small animal model, the experimental group which received two 105 TCID50 I.P. doses of MVvac2(DIII-S,S)P in a 28 day interval developed a robust immune response against MV (1:1280), HBsAg (787 mIU/ml) and DENV2 (Log10 neutralization index of 1.2) on average. In summary, it is possible to display DENV E DIII on hybrid HBsAg particles vectored by MV that elicit an immune response. This forms the basis for a potential vaccine platform against DENV.
ContributorsHarahap, Indira (Author) / Reyes del Valle, Jorge (Thesis advisor) / Hogue, Brenda G (Thesis advisor) / Lake, Douglas (Committee member) / Mason, Hugh (Committee member) / Arizona State University (Publisher)
Created2015
158492-Thumbnail Image.png
Description
Adoptive transfer of T cells engineered to express synthetic antigen-specific T cell receptors (TCRs) has provocative therapeutic applications for treating cancer. However, expressing these synthetic TCRs in a CD4+ T cell line is a challenge. The CD4+ Jurkat T cell line expresses endogenous TCRs that compete for space, accessory proteins,

Adoptive transfer of T cells engineered to express synthetic antigen-specific T cell receptors (TCRs) has provocative therapeutic applications for treating cancer. However, expressing these synthetic TCRs in a CD4+ T cell line is a challenge. The CD4+ Jurkat T cell line expresses endogenous TCRs that compete for space, accessory proteins, and proliferative signaling, and there is the potential for mixed dimer formation between the α and β chains of the endogenous receptor and that of the synthetic cancer-specific TCRs. To prevent hybridization between the receptors and to ensure the binding affinity measured with flow cytometry analysis is between the tetramer and the TCR construct, a CRISPR-Cas9 gene editing pipeline was developed. The guide RNAs (gRNAs) within the complex were designed to target the constant region of the α and β chains, as they are conserved between TCR clonotypes. To minimize further interference and confer cytotoxic capabilities, gRNAs were designed to target the CD4 coreceptor, and the CD8 coreceptor was delivered in a mammalian expression vector. Further, Golden Gate cloning methods were validated in integrating the gRNAs into a CRISPR-compatible mammalian expression vector. These constructs were transfected via electroporation into CD4+ Jurkat T cells to create a CD8+ knockout TCR Jurkat cell line for broadly applicable uses in T cell immunotherapies.
ContributorsHirneise, Gabrielle Rachel (Author) / Anderson, Karen (Thesis advisor) / Mason, Hugh (Committee member) / Lake, Douglas (Committee member) / Arizona State University (Publisher)
Created2020