Matching Items (8)
Filtering by

Clear all filters

151901-Thumbnail Image.png
Description
ABSTRACT 1. Aposematic signals advertise prey distastefulness or metabolic unprofitability to potential predators and have evolved independently in many prey groups over the course of evolutionary history as a means of protection from predation. Most aposematic signals investigated to date exhibit highly chromatic patterning; however, relatives in these toxic groups

ABSTRACT 1. Aposematic signals advertise prey distastefulness or metabolic unprofitability to potential predators and have evolved independently in many prey groups over the course of evolutionary history as a means of protection from predation. Most aposematic signals investigated to date exhibit highly chromatic patterning; however, relatives in these toxic groups with patterns of very low chroma have been largely overlooked. 2. We propose that bright displays with low chroma arose in toxic prey species because they were more effective at deterring predation than were their chromatic counterparts, especially when viewed in relatively low light environments such as forest understories. 3. We analyzed the reflectance and radiance of color patches on the wings of 90 tropical butterfly species that belong to groups with documented toxicity that vary in their habitat preferences to test this prediction: Warning signal chroma and perceived chromaticity are expected to be higher and brightness lower in species that fly in open environments when compared to those that fly in forested environments. 4. Analyses of the reflectance and radiance of warning color patches and predator visual modeling support this prediction. Moreover, phylogenetic tests, which correct for statistical non-independence due to phylogenetic relatedness of test species, also support the hypothesis of an evolutionary correlation between perceived chromaticity of aposematic signals and the flight habits of the butterflies that exhibit these signals.
ContributorsDouglas, Jonathan Marion (Author) / Rutowski, Ronald L (Thesis advisor) / Gadau, Juergen (Committee member) / McGraw, Kevin J. (Committee member) / Arizona State University (Publisher)
Created2013
152309-Thumbnail Image.png
Description
Vertebrate genomes demonstrate a remarkable range of sizes from 0.3 to 133 gigabase pairs. The proliferation of repeat elements are a major genomic expansion. In particular, long interspersed nuclear elements (LINES) are autonomous retrotransposons that have the ability to "cut and paste" themselves into a host genome through a mechanism

Vertebrate genomes demonstrate a remarkable range of sizes from 0.3 to 133 gigabase pairs. The proliferation of repeat elements are a major genomic expansion. In particular, long interspersed nuclear elements (LINES) are autonomous retrotransposons that have the ability to "cut and paste" themselves into a host genome through a mechanism called target-primed reverse transcription. LINES have been called "junk DNA," "viral DNA," and "selfish" DNA, and were once thought to be parasitic elements. However, LINES, which diversified before the emergence of many early vertebrates, has strongly shaped the evolution of eukaryotic genomes. This thesis will evaluate LINE abundance, diversity and activity in four anole lizards. An intrageneric analysis will be conducted using comparative phylogenetics and bioinformatics. Comparisons within the Anolis genus, which derives from a single lineage of an adaptive radiation, will be conducted to explore the relationship between LINE retrotransposon activity and causal changes in genomic size and composition.
ContributorsMay, Catherine (Author) / Kusumi, Kenro (Thesis advisor) / Gadau, Juergen (Committee member) / Rawls, Jeffery A (Committee member) / Arizona State University (Publisher)
Created2013
150916-Thumbnail Image.png
Description
Gene-centric theories of evolution by natural selection have been popularized and remain generally accepted in both scientific and public paradigms. While gene-centrism is certainly parsimonious, its explanations fall short of describing two patterns of evolutionary and social phenomena: the evolution of sex and the evolution of social altruism. I review

Gene-centric theories of evolution by natural selection have been popularized and remain generally accepted in both scientific and public paradigms. While gene-centrism is certainly parsimonious, its explanations fall short of describing two patterns of evolutionary and social phenomena: the evolution of sex and the evolution of social altruism. I review and analyze current theories on the evolution of sex. I then introduce the conflict presented to gene-centric evolution by social phenomena such as altruism and caste sterility in eusocial insects. I review gene-centric models of inclusive fitness and kin selection proposed by Hamilton and Maynard Smith. Based their assumptions, that relatedness should be equal between sterile workers and reproductives, I present several empirical examples that conflict with their models. Following that, I introduce a unique system of genetic caste determination (GCD) observed in hybrid populations of two sister-species of seed harvester ants, Pogonomyrmex rugosus and Pogonomyrmex barbatus. I review the evidence for GCD in those species, followed by a critique of the current gene-centric models used to explain it. In chapter two I present my own theoretical model that is both simple and extricable in nature to explain the origin, evolution, and maintenance of GCD in Pogonomyrmex. Furthermore, I use that model to fill in the gaps left behind by the contributing authors of the other GCD models. As both populations in my study system formed from inter-specific hybridization, I review modern discussions of heterosis (also called hybrid vigor) and use those to help explain the ecological competitiveness of GCD. I empirically address the inbreeding depression the lineages of GCD must overcome in order to remain ecologically stable, demonstrating that as a result of their unique system of caste determination, GCD lineages have elevated recombination frequencies. I summarize and conclude with an argument for why GCD evolved under selective mechanisms which cannot be considered gene-centric, providing evidence that natural selection can effectively operate on non-heritable genotypes appearing in groups and other social contexts.
ContributorsJacobson, Neal (Author) / Gadau, Juergen (Thesis advisor) / Laubichler, Manfred (Committee member) / Pratt, Stephen (Committee member) / Arizona State University (Publisher)
Created2012
151184-Thumbnail Image.png
Description
Here I present a phylogeographic study of at least six reproductively isolated lineages of harvester ants within the Pogonomyrmex barbatus and P. rugosus species group. The genetic and geographic relationships within this clade are complex: four of the identified lineages are divided into two pairs, and each pair has evolved

Here I present a phylogeographic study of at least six reproductively isolated lineages of harvester ants within the Pogonomyrmex barbatus and P. rugosus species group. The genetic and geographic relationships within this clade are complex: four of the identified lineages are divided into two pairs, and each pair has evolved under a mutualistic system that necessitates sympatry. These paired lineages are dependent upon one another because interlineage matings within each pair are the sole source of hybrid F1 workers; these workers build and sustain the colonies, facilitating the production of the reproductive caste, which results solely from intralineage fertilizations. This system of genetic caste determination (GCD) maintains genetic isolation among these closely related lineages, while simultaneously requiring co-expansion and emigration as their distributions have changed over time. Previous studies have also demonstrated that three of the four lineages displaying this unique genetic caste determination phenotype are of hybrid origin. Thus, reconstructing the phylogenetic and geographic history of this group allows us to evaluate past insights and plan future inquiries in a more complete historical biogeographic context. Using mitochondrial DNA sequences sampled across most of the morphospecies' ranges in the U.S. and Mexico, I employed several methods of phylogenetic and DNA sequence analysis, along with comparisons to geological, biogeographic, and phylogeographic studies throughout the sampled regions. These analyses on Pogonomyrmex harvester ants reveal a complex pattern of vicariance and dispersal that is largely concordant with models of late Miocene, Pliocene, and Pleistocene range shifts among various arid-adapted taxa in North America.
ContributorsMott, Brendon (Author) / Gadau, Juergen (Thesis advisor) / Fewell, Jennifer (Committee member) / Anderson, Kirk (Committee member) / Arizona State University (Publisher)
Created2012
156764-Thumbnail Image.png
Description
Amongst the most studied of the social insects, the honey bee has a prominent place due to its economic importance and influence on human societies. Honey bee colonies can have over 50,000 individuals, whose activities are coordinated by chemical signals called pheromones. Because these pheromones are secreted from various exocrine

Amongst the most studied of the social insects, the honey bee has a prominent place due to its economic importance and influence on human societies. Honey bee colonies can have over 50,000 individuals, whose activities are coordinated by chemical signals called pheromones. Because these pheromones are secreted from various exocrine glands, the proper development and function of these glands are vital to colony dynamics. In this thesis, I present a study of the developmental ontogeny of the exocrine glands found in the head of the honey bee. In Chapter 2, I elucidate how the larval salivary gland transitions to an adult salivary gland through apoptosis and cell growth, differentiation and migration. I also explain the development of the hypopharyngeal and the mandibular gland using apoptotic markers and cytoskeletal markers like tubulin and actin. I explain the fundamental developmental plan for the formation of the glands and show that apoptosis plays an important role in the transformation toward an adult gland.
ContributorsNath, Rachna (Author) / Gadau, Juergen (Thesis advisor) / Rawls, Alan (Committee member) / Harrison, Jon (Committee member) / Arizona State University (Publisher)
Created2018
156658-Thumbnail Image.png
Description
Education through field exploration is fundamental in geoscience. But not all students enjoy equal access to field-based learning because of time, cost, distance, ability, and safety constraints. At the same time, technological advances afford ever more immersive, rich, and student-centered virtual field experiences. Virtual field trips may be the only

Education through field exploration is fundamental in geoscience. But not all students enjoy equal access to field-based learning because of time, cost, distance, ability, and safety constraints. At the same time, technological advances afford ever more immersive, rich, and student-centered virtual field experiences. Virtual field trips may be the only practical options for most students to explore pedagogically rich but inaccessible places. A mixed-methods research project was conducted on an introductory and an advanced geology class to explore the implications of learning outcomes of in-person and virtual field-based instruction at Grand Canyon National Park. The study incorporated the Great Unconformity in the Grand Canyon, a 1.2 billion year break in the rock record; the Trail of Time, an interpretive walking timeline; and two immersive, interactive virtual field trips (iVFTs). The in-person field trip (ipFT) groups collectively explored the canyon and took an instructor-guided inquiry hike along the interpretive Trail of Time from rim level, while iVFT students individually explored the canyon and took a guided-inquiry virtual tour of Grand Canyon geology from river level. High-resolution 360° spherical images anchor the iVFTs and serve as a framework for programmed overlays that enable interactivity and allow the iVFT to provide feedback in response to student actions. Students in both modalities received pre- and post-trip Positive and Negative Affect Schedules (PANAS). The iVFT students recorded pre- to post-trip increases in positive affect (PA) scores and decreases in negative (NA) affect scores, representing an affective state conducive to learning. Pre- to post-trip mean scores on concept sketches used to assess visualization and geological knowledge increased for both classes and modalities. However, the iVFT pre- to post-trip increases were three times greater (statistically significant) than the ipFT gains. Both iVFT and ipFT students scored 92-98% on guided-inquiry worksheets completed during the trips, signifying both met learning outcomes. Virtual field trips do not trump traditional in-person field work, but they can meet and/or exceed similar learning objectives and may replace an inaccessible or impractical in-person field trip.
ContributorsRuberto, Thomas (Author) / Semken, Steve (Thesis advisor) / Anbar, Ariel (Committee member) / Brownell, Sara (Committee member) / Arizona State University (Publisher)
Created2018
157815-Thumbnail Image.png
Description
Resource transfers can confer many adaptive benefits such as specialization, helping genetically related individuals, future compensation, and risk-pooling. Need-based transfers are a risk-pooling mechanism in which partners mitigate unpredictable losses by transferring resources based on need. Need-based transfers are likely to be most useful for resources that are necessary and

Resource transfers can confer many adaptive benefits such as specialization, helping genetically related individuals, future compensation, and risk-pooling. Need-based transfers are a risk-pooling mechanism in which partners mitigate unpredictable losses by transferring resources based on need. Need-based transfers are likely to be most useful for resources that are necessary and unpredictable because being unable to reliably obtain essential resources would be devastating. However, need-based transfers make people vulnerable to two types of exploitation: a person can be greedy by asking when not in need and a person with a surplus of resources can be stingy by not giving to someone in need. Previous research suggests that people might have cognitive mechanisms for detecting greediness and stinginess, which would serve to protect against exploitation by cheaters. This study investigated whether resources that are necessary and unpredictable are most likely to trigger greediness and stinginess detection mechanisms. Participants saw four types of rules. One rule could be violated through greedy behavior, another through stingy behavior, another by not paying a debt, and another was a descriptive rule that could be violated by not finding one type of resource near another type of resource. Then, participants saw information about events relating to one of the rules and indicated whether the rule in question could have been violated. Consistent with past research, participants were better at detecting greediness, stinginess, and debts not paid than at detecting violations of a descriptive rule. However, contrary to my predictions, the necessity and unpredictability of resources did not impact people’s ability to detect greediness and stinginess. The lack of support for my hypothesis might be because the benefits of detecting greediness and stinginess might outweigh the costs even for situations in which need-based transfer rules are unlikely to apply, because people might be able to consciously activate their greediness and stinginess mechanisms even for resources that would not naturally trigger them, or because of methodological limitations.
ContributorsMunoz Castro, Andres (Author) / Aktipis, Athena (Thesis advisor) / Hruschka, Daniel (Committee member) / Neuberg, Steven (Committee member) / Arizona State University (Publisher)
Created2019
154733-Thumbnail Image.png
Description
Calls for changes in science education over the last several decades have contributed to a changing landscape of undergraduate life science education. As opposed to simply lecturing at students and expecting them to recite science facts, there has been a strong push to make systemic changes so that students not

Calls for changes in science education over the last several decades have contributed to a changing landscape of undergraduate life science education. As opposed to simply lecturing at students and expecting them to recite science facts, there has been a strong push to make systemic changes so that students not only know pertinent science content, but also walk away with critical science process skills. There have been suggestions to create environments that focus on goals such as evaluating scientific evidence and explanations, understanding the development of scientific knowledge, and participating in scientific practice and discourse. As a part of the call for increases in student participation in science practice, we’ve seen suggestions to increase student exposure to the tools, techniques, and published research within various science fields. The use of primary scientific literature in the classroom is documented as being a tool to introduce students to the nature of scientific reasoning, experimental design, and knowledge creation and transformation. Many of the current studies on primary scientific literature in undergraduate courses report on intensive course designs in which students interact with the material with very specific goals, as outlined by the authors and researchers. We know less about the practices that take place in typical undergraduate settings. This exploratory study looks at information provided by a national sample of faculty that alludes to what sort of practices are taking place and the reasoning for doing so. Through analysis of both closed-ended and open-ended survey questions we have found that faculty are engaging students with primary scientific literature for many reasons and in a variety of ways. We have also attempted to characterize the way in which faculty view the body of scientific literature, as members of the research community. We discuss the implications of faculty views on the utility and value of the body of scientific literature. We also argue that those perceptions inform how the material is used in the undergraduate classroom.
ContributorsWagoner, Nevada (Author) / Brownell, Sara (Thesis advisor) / Maienschein, Jane (Thesis advisor) / Ellison, Karin (Committee member) / Arizona State University (Publisher)
Created2016