Matching Items (25)
Filtering by

Clear all filters

157667-Thumbnail Image.png
Description
In nature, it is commonly observed that animals and birds perform movement-based thermoregulation activities to regulate their body temperatures. For example, flapping of elephant ears or plumage fluffing in birds. Taking inspiration from nature and to explore the possibilities of such heat transfer enhancements, augmentation of heat transfer rates induced

In nature, it is commonly observed that animals and birds perform movement-based thermoregulation activities to regulate their body temperatures. For example, flapping of elephant ears or plumage fluffing in birds. Taking inspiration from nature and to explore the possibilities of such heat transfer enhancements, augmentation of heat transfer rates induced by the vibration of solid and well as novel flexible pinned heatsinks were studied in this research project. Enhancement of natural convection has always been very important in improving the performance of the cooling mechanisms. In this research, flexible heatsinks were developed and they were characterized based on natural convection cooling with moderately vibrating conditions. The vibration of heated surfaces such as motor surfaces, condenser surfaces, robotic arms and exoskeletons led to the motivation of the development of heat sinks having flexible fins with an improved heat transfer capacity. The performance of an inflexible, solid copper pin fin heat sink was considered as the baseline, current industry standard for the thermal performance. It is expected to obtain maximum convective heat transfer at the resonance frequency of the flexible pin fins. Current experimental results with fixed input frequency and varying amplitudes indicate that the vibration provides a moderate improvement in convective heat transfer, however, the flexibility of fins had negligible effects.
ContributorsPrabhu, Saurabh (Author) / Rykaczewski, Konrad (Thesis advisor) / Phelan, Patrick (Committee member) / Wang, Robert (Committee member) / Arizona State University (Publisher)
Created2019
161473-Thumbnail Image.png
Description
Buildings release an abundance of waste heat that is left unused. Thermogalvaniccells (TGCs) can take advantage of waste heat to generate electricity with a low temperature gradient. In this dissertation, I simulated the thermal transport of TGCs containing different triply periodic minimal surface (TPMS) structures, compared it to measured values and conducted a

Buildings release an abundance of waste heat that is left unused. Thermogalvaniccells (TGCs) can take advantage of waste heat to generate electricity with a low temperature gradient. In this dissertation, I simulated the thermal transport of TGCs containing different triply periodic minimal surface (TPMS) structures, compared it to measured values and conducted a mesh convergence study to examine the viability of the computational fluid dynamics (CFD) solutions. Natural convection effects are one of the driving forces in TGCs. Using the Bousinesq approximation, I was able to capture those effects in the CFD simulations as it accounts for the density variations of the fluid. Upon simulating the TGC using the Schwarz P TPMS geometry, the cathode temperature converged as I refined the mesh and approached the measured value. As for the IWP TPMS structure, the solution converged as I refined the mesh, despite having a deviation to the measured values. This was due to the abundance of sharp regions along the walls of the TPMS that ANSYS had difficulty to accurately model. Furthermore, I simulated the TGCs using different boundary condition (BC) approximations to observe the cathode and anode temperatures as well as their overall ∆T across the cell. For the TGC containing the Schwarz P geometry, Case C (constant anode temperature BC with TPMS conduction) was the most accurate while Case D (convection BC at anode with TPMS conduction) deviated from the measured values, had the most accurate ∆T and was well within the uncertainty bounds of the measured values. Larger temperature fluctuations were seen closer to the cathode while the effects steadily decrease as the fluid approaches the anode. Moreover, the TGC containing the IWP structures presented interesting results. The main deviation was from the cathode temperatures because a higher temperature readings meant that more cells in the fluid domain were prone to diverging, thereby resulting in a higher calculated cathode temperature. Simulating the TGC with the Schwarz P geometry produced satisfactory results while the TGC using the IWP geometry deviated due to the software limitations. Finally, the effects of natural convection and TPMS on TGCs were studied and it was found that the absence of natural convection lead to a higher ∆T while the absence of TPMS resulted in a more uniform temperature distribution throughout the domain
Contributorsalweqayyan, yousef (Author) / Phelan, Patrick (Thesis advisor) / Rykaczewski, Konrad (Committee member) / Milcarek, Ryan (Committee member) / Arizona State University (Publisher)
Created2021
161465-Thumbnail Image.png
Description
The phase change process of freezing water is an important application in several fields such as ice making, food freezing technologies, pharmaceuticals etc. Due to the widespread usage of ice-related products, process improvements in this technology can potentially lead to substantial energy savings. After studying the freezing process of water,

The phase change process of freezing water is an important application in several fields such as ice making, food freezing technologies, pharmaceuticals etc. Due to the widespread usage of ice-related products, process improvements in this technology can potentially lead to substantial energy savings. After studying the freezing process of water, the supercooling phenomenon was found to occur which showed a negative effect. Therefore, ultrasound was proposed as a technique to reduce the supercooling effect and improve the heat transfer rate. An experimental study was conducted to analyze the energy expenditures in the freezing process with and without the application of ultrasound. After a set of preliminary experiments, an intermittent application of ultrasound at 10W & 3.5W power levels were found to be more effective than constant-power application, and were explored in further detail. The supercooling phenomenon was thoroughly studied through iterative experiments. It was also found that the application of ultrasound during the freezing process led to the formation of shard-like ice crystals. From the intermittent ultrasound experiments performed at 10W and 3.5W power levels, percentage energy enhancements relative to no ultrasound of 8.9% ± 12.4% and 11.9% ± 24.6% were observed, respectively.
ContributorsSubramanian, Varun (Author) / Phelan, Patrick (Thesis advisor) / Calhoun, Ronald (Committee member) / Rykaczewski, Konrad (Committee member) / Arizona State University (Publisher)
Created2021
168808-Thumbnail Image.png
Description
Dehumidifiers are ubiquitous and essential household appliances in many parts of the world. They are used extensively in tropical and sub-tropical environments to lower humidity in living spaces, where high ambient humidity can lead to numerous negative health effects from mild physical discomfort to more serious conditions such as mold

Dehumidifiers are ubiquitous and essential household appliances in many parts of the world. They are used extensively in tropical and sub-tropical environments to lower humidity in living spaces, where high ambient humidity can lead to numerous negative health effects from mild physical discomfort to more serious conditions such as mold build up in structures and dangerous illnesses in humans. Most common dehumidifiers are based on conventional mechanical refrigeration cycles, where the effects of condensation heat transfer play a critical role in their effectiveness. In these devices, humid ambient air flows over a cold evaporator, which lowers the temperature of the humid ambient air below its dew point temperature and therefore decreases its water content by causing liquid water condensation on the evaporator surface. The rate at which humidity can be extracted from the ambient air is governed in part by how quickly the evaporator can shed the condensed droplets. Recent advances in soft, stretchable, thermally enhanced (through the addition of liquid metals) silicone tubing offer the potential to use these stretchable tubes in place of conventional copper pipe for applications such as dehumidification. Copper is a common material choice for dehumidifier evaporator tubing owing to its ubiquity and its high thermal conductivity, but it has several thermal downsides. Specifically, copper tubes remain static and typically rely on gravity alone to remove water droplets when they reach a sufficient mass. Additionally, copper’s naturally hydrophilic surface promotes film-wise condensation, which is substantially less effective than dropwise condensation. In contrast to copper, thermally enhanced soft stretchable tubes have naturally hydrophobic surfaces that promote the more effective dropwise condensation mode and a soft surface that offers higher nucleation density. However, soft surfaces also increase droplet pinning, which inhibits their departure. This work experimentally explores the effects of periodic axial stretching and retraction of soft tubing internally cooled with water on droplet condensation dynamics on its exterior surface. Results are discussed in terms of overall system thermal performance and real-time condensation imaging. An overall null result is discovered, and recommendations for future experiments are made.
Contributorsnordstog, thomas (Author) / Rykaczewski, Konrad (Thesis advisor) / Wang, Robert (Committee member) / Devasenathipathy, Shankar (Committee member) / Arizona State University (Publisher)
Created2022
193043-Thumbnail Image.png
Description
The measurement of the radiation and convection that the human body experiences are important for ensuring safety in extreme heat conditions. The radiation from the surroundings on the human body is most often measured using globe or cylindrical radiometers. The large errors stemming from differences in internal and exterior temperatures

The measurement of the radiation and convection that the human body experiences are important for ensuring safety in extreme heat conditions. The radiation from the surroundings on the human body is most often measured using globe or cylindrical radiometers. The large errors stemming from differences in internal and exterior temperatures and indirect estimation of convection can be resolved by simultaneously using three cylindrical radiometers (1 cm diameter, 9 cm height) with varying surface properties and internal heating. With three surface balances, the three unknowns (heat transfer coefficient, shortwave, and longwave radiation) can be solved for directly. As compared to integral radiation measurement technique, however, the bottom mounting using a wooden-dowel of the three-cylinder radiometers resulted in underestimated the total absorbed radiation. This first part of this thesis focuses on reducing the size of the three-cylinder radiometers and an alternative mounting that resolves the prior issues. In particular, the heat transfer coefficient in laminar wind tunnel with wind speed of 0.25 to 5 m/s is measured for six polished, heated cylinders with diameter of 1 cm and height of 1.5 to 9 cm mounted using a wooden dowel. For cylinders with height of 6 cm and above, the heat transfer coefficients are independent of the height and agree with the Hilpert correlation for infinitely long cylinder. Subsequently, a side-mounting for heated 6 cm tall cylinder with top and bottom metallic caps is developed and tested within the wind tunnel. The heat transfer coefficient is shown to be independent of the flow-side mounting and in agreement with the Hilpert correlation. The second part of this thesis explores feasibility of employing the three-cylinder concept to measuring all air-flow parameters relevant to human convection including mean wind speed, turbulence intensity and length scale. Heated cylinders with same surface properties but varying diameters are fabricated. Uniformity of their exterior temperature, which is fundamental to the three-cylinder anemometer concept, is tested during operation using infrared camera. To provide a lab-based method to measure convection from the cylinders in turbulent flow, several designs of turbulence-generating fractal grids are laser-cut and introduced into the wind tunnel.
ContributorsGupta, Mahima (Author) / Rykaczewski, Konrad (Thesis advisor) / Pathikonda, Gokul (Thesis advisor) / Middel, Ariane (Committee member) / Arizona State University (Publisher)
Created2024