Matching Items (88)
Filtering by

Clear all filters

151054-Thumbnail Image.png
Description
Gas diffusion layers (GDLs) are a critical and essential part of proton exchange membrane fuel cells (PEMFCs). They carry out various important functions such as transportation of reactants to and from the reaction sites. The material properties and structural characteristics of the substrate and the microporous layer strongly influence fuel

Gas diffusion layers (GDLs) are a critical and essential part of proton exchange membrane fuel cells (PEMFCs). They carry out various important functions such as transportation of reactants to and from the reaction sites. The material properties and structural characteristics of the substrate and the microporous layer strongly influence fuel cell performance. The microporous layer of the GDLs was fabricated with the carbon slurry dispersed in water containing ammonium lauryl sulfate (ALS) using the wire rod coating method. GDLs were fabricated with different materials to compose the microporous layer and evaluated the effects on PEMFC power output performance. The consistency of the carbon slurry was achieved by adding 25 wt. % of PTFE, a binding agent with a 75:25 ratio of carbon (Pureblack and vapor grown carbon fiber). The GDLs were investigated in PEMFC under various relative humidity (RH) conditions using H2/O2 and H2/Air. GDLs were also fabricated with the carbon slurry dispersed in water containing sodium dodecyl sulfate (SDS) and multiwalled carbon nanotubes (MWCNTs) with isopropyl alcohol (IPA) based for fuel cell performance comparison. MWCNTs and SDS exhibits the highest performance at 60% and 70% RH with a peak power density of 1100 mW.cm-2 and 850 mW.cm-2 using air and oxygen as an oxidant. This means that the gas diffusion characteristics of these two samples were optimum at 60 and 70 % RH with high limiting current density range. It was also found that the composition of the carbon slurry, specifically ALS concentration has the highest peak power density of 1300 and 500mW.cm-2 for both H2/O2 and H2/Air at 100% RH. However, SDS and MWCNTs demonstrates the lowest power density using air and oxygen as an oxidants at 100% RH.
ContributorsVillacorta, Rashida (Author) / Madakannan, Arunachalanadar (Thesis advisor) / Peng, Xihong (Committee member) / Tamizhmani, Govindasamy (Committee member) / Arizona State University (Publisher)
Created2012
151066-Thumbnail Image.png
Description
This thesis concerns with the impact of renewable generation resources on the power system stability. The rapidly increasing integration of renewable energy sources into the grid can change the way power systems operate and respond to system disturbances. This is because the available inertia from synchronous machines, which helps in

This thesis concerns with the impact of renewable generation resources on the power system stability. The rapidly increasing integration of renewable energy sources into the grid can change the way power systems operate and respond to system disturbances. This is because the available inertia from synchronous machines, which helps in damping system oscillations, gets reduced as an increase in renewables like wind and solar photovoltaics is accompanied by a decrease in conventional generators. This aspect of high penetration of renewables has the potential to affect the rotor angle stability and small signal stability of power systems. The system with increased renewables is mathematically modeled to rep-resent wind and solar resources. Transient and small signal stability studies are performed for various operating cases. The main conclusion drawn from the different studies is that increased renewable penetration causes a few instability problems, most of which are either localized and do not adversely affect the over-all system stability. It is also found that the critical inter-area modes of oscillations are sufficiently damped.
ContributorsSingh, Iknoor (Author) / Vittal, Vijay (Thesis advisor) / Ayyanar, Raja (Committee member) / Hedman, Kory (Committee member) / Arizona State University (Publisher)
Created2012
151080-Thumbnail Image.png
Description
Electric utilities are exploring new technologies to cope up with the in-crease in electricity demand and power transfer capabilities of transmission lines. Compact transmission lines and high phase order systems are few of the techniques which enhance the power transfer capability of transmission lines without requiring any additional right-of-way. This

Electric utilities are exploring new technologies to cope up with the in-crease in electricity demand and power transfer capabilities of transmission lines. Compact transmission lines and high phase order systems are few of the techniques which enhance the power transfer capability of transmission lines without requiring any additional right-of-way. This research work investigates the impact of compacting high voltage transmission lines and high phase order systems on the surface electric field of composite insulators, a key factor deciding service performance of insulators. The electric field analysis was done using COULOMB 9.0, a 3D software package which uses a numerical analysis technique based on Boundary Element Method (BEM). 3D models of various types of standard transmission towers used for 230 kV, 345 kV and 500 kV level were modeled with different insulators con-figurations and number of circuits. Standard tower configuration models were compacted by reducing the clearance from live parts in steps of 10%. It was found that the standard tower configuration can be compacted to 30% without violating the minimum safety clearance mandated by NESC standards. The study shows that surface electric field on insulators for few of the compact structures exceeded the maximum allowable limit even if corona rings were installed. As a part of this study, a Gaussian process model based optimization pro-gram was developed to find the optimum corona ring dimensions to limit the electric field within stipulated values. The optimization program provides the dimen-sions of corona ring, its placement from the high voltage end for a given dry arc length of insulator and system voltage. JMP, a statistical computer package and AMPL, a computer language widely used form optimization was used for optimi-zation program. The results obtained from optimization program validated the industrial standards.
ContributorsMohan, Nihal (Author) / Gorur, Ravi S. (Thesis advisor) / Heydt, Gerald T. (Committee member) / Vittal, Vijay (Committee member) / Arizona State University (Publisher)
Created2012
150928-Thumbnail Image.png
Description
Photovoltaic (PV) modules are typically rated at three test conditions: STC (standard test conditions), NOCT (nominal operating cell temperature) and Low E (low irradiance). The current thesis deals with the power rating of PV modules at twenty-three test conditions as per the recent International Electrotechnical Commission (IEC) standard of IEC

Photovoltaic (PV) modules are typically rated at three test conditions: STC (standard test conditions), NOCT (nominal operating cell temperature) and Low E (low irradiance). The current thesis deals with the power rating of PV modules at twenty-three test conditions as per the recent International Electrotechnical Commission (IEC) standard of IEC 61853 – 1. In the current research, an automation software tool developed by a previous researcher of ASU – PRL (ASU Photovoltaic Reliability Laboratory) is validated at various stages. Also in the current research, the power rating of PV modules for four different manufacturers is carried out according to IEC 61853 – 1 standard using a new outdoor test method. The new outdoor method described in this thesis is very different from the one reported by a previous researcher of ASU – PRL. The new method was designed to reduce the labor hours in collecting the current-voltage ( I – V) curves at various temperatures and irradiance levels. The power matrices for all the four manufacturers were generated using the I – V data generated at different temperatures and irradiance levels and the translation procedures described in IEC 60891 standard. All the measurements were carried out on both clear and cloudy days using an automated 2 – axis tracker located at ASU – PRL, Mesa, Arizona. The modules were left on the 2 – axis tracker for 12 continuous days and the data was continuously and automatically collected for every two minutes from 6 am to 6 pm. In order to obtain the I – V data at wide range of temperatures and irradiance levels, four identical (or nearly identical) modules were simultaneously installed on the 2 – axis tracker with and without thermal insulators on the back of the modules and with and without mesh screens on the front of the modules. Several issues related to the automation software were uncovered and the required improvement in the software has been suggested. The power matrices for four manufacturers have been successfully generated using the new outdoor test method developed in this work. The data generated in this work has been extensively analyzed for accuracy and for performance efficiency comparison at various temperatures and irradiance levels.
ContributorsVemula, Meena Gupta (Author) / Tamizhmani, Govindasamy (Thesis advisor) / Macia, Narcio F. (Committee member) / Rogers, Bradley (Committee member) / Arizona State University (Publisher)
Created2012
150825-Thumbnail Image.png
Description
Low temperature fuel cells are very attractive energy conversion technology for automotive applications due to their qualities of being clean, quiet, efficient and good peak power densities. However, due to high cost and limited durability and reliability, commercialization of this technology has not been possible as yet. The high fuel

Low temperature fuel cells are very attractive energy conversion technology for automotive applications due to their qualities of being clean, quiet, efficient and good peak power densities. However, due to high cost and limited durability and reliability, commercialization of this technology has not been possible as yet. The high fuel cell cost is mostly due to the expensive noble catalyst Pt. Alkaline fuel cell (AFC) systems, have potential to make use of non-noble catalysts and thus, provides with a solution of overall lower cost. Therefore, this issue has been addressed in this thesis work. Hydrogen-oxygen fuel cells using an alkaline anion exchange membrane were prepared and evaluated. Various non-platinum catalyst materials were investigated by fabricating membrane-electrode assemblies (MEAs) using Tokuyama membrane (# A201) and compared with commercial noble metal catalysts. Co and Fe phthalocyanine catalyst materials were synthesized using multi-walled carbon nanotubes (MWCNTs) as support materials. X-ray photoelectron spectroscopic study was conducted in order to examine the surface composition. The electroreduction of oxygen has been investigated on Fe phthalocyanine/MWCNT, Co phthalocyanine/MWCNT and commercial Pt/C catalysts. The oxygen reduction reaction kinetics on these catalyst materials were evaluated using rotating disk electrodes in 0.1 M KOH solution and the current density values were consistently higher for Co phthalocyanine based electrodes compared to Fe phthalocyanine. The fuel cell performance of the MEAs with Co and Fe phthalocyanines and Tanaka Kikinzoku Kogyo Pt/C cathode catalysts were 100, 60 and 120 mW cm-2 using H22 and O2 gases. This thesis also includes work on synthesizing nitrogen doped MWCNTs using post-doping and In-Situ methods. Post-doped N-MWNCTs were prepared through heat treatment with NH4OH as nitrogen source. Characterization was done through fuel cell testing, which gave peak power density ~40mW.cm-2. For In-Situ N-MWCT, pyridine was used as nitrogen source. The sample characterization was done using Raman spectroscopy and RBS, which showed the presence ~3 at.% of nitrogen on the carbon surface.
ContributorsShah, QuratulAin Jawed (Author) / Madakannan, Arunachalanadar (Thesis advisor) / Tamizhmani, Govindasamy (Committee member) / Macia, Narciso (Committee member) / Arizona State University (Publisher)
Created2012
150831-Thumbnail Image.png
Description
With a recent shift to a more environmentally conscious society, low-carbon and non-carbon producing energy production methods are being investigated and applied all over the world. Of these methods, fuel cells show great potential for clean energy production. A fuel cell is an electrochemical energy conversion device which directly converts

With a recent shift to a more environmentally conscious society, low-carbon and non-carbon producing energy production methods are being investigated and applied all over the world. Of these methods, fuel cells show great potential for clean energy production. A fuel cell is an electrochemical energy conversion device which directly converts chemical energy into electrical energy. Proton exchange membrane fuel cells (PEMFCs) are a highly researched energy source for automotive and stationary power applications. In order to produce the power required to meet Department of Energy requirements, platinum (Pt) must be used as a catalyst material in PEMFCs. Platinum, however, is very expensive and extensive research is being conducted to develop ways to reduce the amount of platinum used in PEMFCs. In the current study, three catalyst synthesis techniques were investigated and evaluated on their effectiveness to produce platinum-on copper (Pt@Cu) core-shell nanocatalyst on multi-walled carbon nanotube (MWCNT) support material. These three methods were direct deposition method, two-phase surfactant method, and single-phase surfactant method, in which direct deposition did not use a surfactant for particle size control and the surfactant methods did. The catalyst materials synthesized were evaluated by visual inspection and fuel cell performance. Samples which produced high fuel cell power output were evaluated using transmission electron microscopy (TEM) imaging. After evaluation, it was concluded that the direct deposition technique was effective in synthesizing Pt@Cu core-shell nanocatalyst on MWCNTs support when a rinsing process was used before adding platinum. The peak power density achieved by the rinsed core-shell catalyst was 618 mW.cm-2 , 13 percent greater than that of commercial platinum-carbon (Pt/C) catalyst. Transmission electron microscopy imaging revealed the core-shell catalyst contained Pt shells and platinum-copper alloy cores. Rinsing with deionized (DI) water was shown to be a crucial step in core-shell catalyst deposition as it reduced the number of platinum colloids on the carbon nanotube surface. After evaluation, it was concluded that the two-phase surfactant and single-phase surfactant synthesis methods were not effective at producing core-shell nanocatalyst with the parameters investigated.
ContributorsAdame, Anthony (Author) / Madakannan, Arunachalanadar (Thesis advisor) / Peng, Xihong (Committee member) / Tamizhmani, Govindasamy (Committee member) / Arizona State University (Publisher)
Created2012
150856-Thumbnail Image.png
Description
Voltage stability is always a major concern in power system operation. Recently Fault Induced Delayed Voltage Recovery (FIDVR) has gained increased attention. It is widely believed that the motor-driven loads of high efficiency, low inertia air conditioners are one of the main causes of FIDVR events. Simulation tools that assist

Voltage stability is always a major concern in power system operation. Recently Fault Induced Delayed Voltage Recovery (FIDVR) has gained increased attention. It is widely believed that the motor-driven loads of high efficiency, low inertia air conditioners are one of the main causes of FIDVR events. Simulation tools that assist power system operation and planning have been found insufficient to reproduce FIDVR events. This is because of their inaccurate load modeling of single-phase motor loads. Conventionally three-phase motor models have been used to represent the aggregation effect of single-phase motor load. However researchers have found that this modeling method is far from an accurate representation of single-phase induction motors. In this work a simulation method is proposed to study the precise influence of single-phase motor load in context of FIDVR. The load, as seen the transmission bus, is replaced with a detailed distribution system. Each single-phase motor in the distribution system is represented by an equipment-level model for best accuracy. This is to enable the simulation to capture stalling effects of air conditioner compressor motors as they are related to FIDVR events. The single phase motor models are compared against the traditional three phase aggregate approximation. Also different percentages of single-phase motor load are compared and analyzed. Simulation result shows that proposed method is able to reproduce FIDVR events. This method also provides a reasonable estimation of the power system voltage stability under the contingencies.
ContributorsMa, Yan (Author) / Karady, George G. (Thesis advisor) / Vittal, Vijay (Committee member) / Ayyanar, Raja (Committee member) / Arizona State University (Publisher)
Created2012
151247-Thumbnail Image.png
Description
In the United States, especially in metropolitan areas, transmission infra-structure is congested due to a combination of increasing load demands, declining investment, and aging facilities. It is anticipated that significant investments will be required for new construction and upgrades in order to serve load demands. This thesis explores higher phase

In the United States, especially in metropolitan areas, transmission infra-structure is congested due to a combination of increasing load demands, declining investment, and aging facilities. It is anticipated that significant investments will be required for new construction and upgrades in order to serve load demands. This thesis explores higher phase order systems, specifically, six-phase, as a means of increasing power transfer capability, and provides a comparison with conventional three-phase double circuit transmission lines. In this thesis, the line parameters, electric and magnetic fields, and right of way are the criteria for comparing six-phase and three-phase double circuit lines. The calculations of the criteria were achieved by a program developed using MATLAB. This thesis also presents fault analysis and recommends suitable pro-tection for six-phase transmission lines. This calculation was performed on 4-bus, 9-bus, and 118-bus systems from Powerworld® sample cases. The simulations were performed using Powerworld® and PSCAD®. Line parameters calculations performed in this thesis show that line imped-ances in six-phase lines have a slight difference, compared to three-phase double circuit line. The shunt capacitance of compacted six phase line is twice of the value in the three-phase double circuit line. As a consequence, the compacted six-phase line provides higher surge impedance loadings. The electric and magnetic fields calculations show that, ground level electric fields of the six-phase lines decline more rapidly as the distance from center of the lines increase. The six-phase lines have a better performance on ground level magnetic field. Based on the electric and magnetic field results, right of way re-quirements for the six-phase lines and three-phase double circuit line were calcu-lated. The calculation results of right of way show that six-phase lines provide higher power transfer capability with a given right of way. Results from transmission line fault analysis, and protection study show that, fault types and protection system in six-phase lines are more complicated, com-pared to three-phase double circuit line. To clarify the concern about six-phase line protection, a six-phase line protection system was designed. Appropriate pro-tection settings were determined for a six-phase line in the 4-bus system.
ContributorsDeng, Xianda (Author) / Gorur, Ravi (Thesis advisor) / Heydt, Gerald (Committee member) / Vittal, Vijay (Committee member) / Arizona State University (Publisher)
Created2012
154078-Thumbnail Image.png
Description
Photovoltaic (PV) module degradation is a well-known issue, however understanding the mechanistic pathways in which modules degrade is still a major task for the PV industry. In order to study the mechanisms responsible for PV module degradation, the effects of these degradation mechanisms must be quantitatively measured to determine the

Photovoltaic (PV) module degradation is a well-known issue, however understanding the mechanistic pathways in which modules degrade is still a major task for the PV industry. In order to study the mechanisms responsible for PV module degradation, the effects of these degradation mechanisms must be quantitatively measured to determine the severity of each degradation mode. In this thesis multiple modules from three climate zones (Arizona, California and Colorado) were investigated for a single module glass/polymer construction (Siemens M55) to determine the degree to which they had degraded, and the main factors that contributed to that degradation. To explain the loss in power, various nondestructive and destructive techniques were used to indicate possible causes of loss in performance. This is a two-part thesis. Part 1 presents non-destructive test results and analysis and Part 2 presents destructive test results and analysis.
ContributorsChicca, Matthew (Author) / Tamizhmani, Govindasamy (Thesis advisor) / Rogers, Bradley (Committee member) / Srinivasan, Devarajan (Committee member) / Arizona State University (Publisher)
Created2015
Description
Power flow calculation plays a significant role in power system studies and operation. To ensure the reliable prediction of system states during planning studies and in the operating environment, a reliable power flow algorithm is desired. However, the traditional power flow methods (such as the Gauss Seidel method and the

Power flow calculation plays a significant role in power system studies and operation. To ensure the reliable prediction of system states during planning studies and in the operating environment, a reliable power flow algorithm is desired. However, the traditional power flow methods (such as the Gauss Seidel method and the Newton-Raphson method) are not guaranteed to obtain a converged solution when the system is heavily loaded.

This thesis describes a novel non-iterative holomorphic embedding (HE) method to solve the power flow problem that eliminates the convergence issues and the uncertainty of the existence of the solution. It is guaranteed to find a converged solution if the solution exists, and will signal by an oscillation of the result if there is no solution exists. Furthermore, it does not require a guess of the initial voltage solution.

By embedding the complex-valued parameter α into the voltage function, the power balance equations become holomorphic functions. Then the embedded voltage functions are expanded as a Maclaurin power series, V(α). The diagonal Padé approximant calculated from V(α) gives the maximal analytic continuation of V(α), and produces a reliable solution of voltages. The connection between mathematical theory and its application to power flow calculation is described in detail.

With the existing bus-type-switching routine, the models of phase shifters and three-winding transformers are proposed to enable the HE algorithm to solve practical large-scale systems. Additionally, sparsity techniques are used to store the sparse bus admittance matrix. The modified HE algorithm is programmed in MATLAB. A study parameter β is introduced in the embedding formula βα + (1- β)α^2. By varying the value of β, numerical tests of different embedding formulae are conducted on the three-bus, IEEE 14-bus, 118-bus, 300-bus, and the ERCOT systems, and the numerical performance as a function of β is analyzed to determine the “best” embedding formula. The obtained power-flow solutions are validated using MATPOWER.
ContributorsLi, Yuting (Author) / Tylavsky, Daniel J (Thesis advisor) / Undrill, John (Committee member) / Vittal, Vijay (Committee member) / Arizona State University (Publisher)
Created2015