Matching Items (46)

Filtering by

Clear all filters

149503-Thumbnail Image.png

Stereo based visual odometry

Description

The exponential rise in unmanned aerial vehicles has necessitated the need for accurate pose estimation under any extreme conditions. Visual Odometry (VO) is the estimation of position and orientation of a vehicle based on analysis of a sequence of images

The exponential rise in unmanned aerial vehicles has necessitated the need for accurate pose estimation under any extreme conditions. Visual Odometry (VO) is the estimation of position and orientation of a vehicle based on analysis of a sequence of images captured from a camera mounted on it. VO offers a cheap and relatively accurate alternative to conventional odometry techniques like wheel odometry, inertial measurement systems and global positioning system (GPS). This thesis implements and analyzes the performance of a two camera based VO called Stereo based visual odometry (SVO) in presence of various deterrent factors like shadows, extremely bright outdoors, wet conditions etc... To allow the implementation of VO on any generic vehicle, a discussion on porting of the VO algorithm to android handsets is presented too. The SVO is implemented in three steps. In the first step, a dense disparity map for a scene is computed. To achieve this we utilize sum of absolute differences technique for stereo matching on rectified and pre-filtered stereo frames. Epipolar geometry is used to simplify the matching problem. The second step involves feature detection and temporal matching. Feature detection is carried out by Harris corner detector. These features are matched between two consecutive frames using the Lucas-Kanade feature tracker. The 3D co-ordinates of these matched set of features are computed from the disparity map obtained from the first step and are mapped into each other by a translation and a rotation. The rotation and translation is computed using least squares minimization with the aid of Singular Value Decomposition. Random Sample Consensus (RANSAC) is used for outlier detection. This comprises the third step. The accuracy of the algorithm is quantified based on the final position error, which is the difference between the final position computed by the SVO algorithm and the final ground truth position as obtained from the GPS. The SVO showed an error of around 1% under normal conditions for a path length of 60 m and around 3% in bright conditions for a path length of 130 m. The algorithm suffered in presence of shadows and vibrations, with errors of around 15% and path lengths of 20 m and 100 m respectively.

Contributors

Agent

Created

Date Created
2010

152389-Thumbnail Image.png

Automated animal coloration quantification in digital images using dominant colors and skin classification

Description

The origin and function of color in animals has been a subject of great interest for taxonomists and ecologists in recent years. Coloration in animals is useful for many important functions like species identification, camouflage and understanding evolutionary relationships. Quantitative

The origin and function of color in animals has been a subject of great interest for taxonomists and ecologists in recent years. Coloration in animals is useful for many important functions like species identification, camouflage and understanding evolutionary relationships. Quantitative measurements of color signal and patch size in mammals, birds and reptiles, to name a few are strong indicators of sexual selection cues and individual health. These measurements provide valuable insights into the impact of environmental conditions on habitat and breeding of mammals, birds and reptiles. Recent advances in the area of digital cameras and sensors have led to a significant increase in the use of digital photography as a means of color quantification in animals. Although a significant amount of research has been conducted on ways to standardize image acquisition conditions and calibrate cameras for use in animal color quantification, almost no work has been done on designing automated methods for animal color quantification. This thesis presents a novel perceptual"–"based framework for the automated extraction and quantification of animal coloration from digital images with slowly varying (almost homogenous) background colors. This implemented framework uses a combination of several techniques including color space quantization using a few dominant colors, foreground"–"background identification, Bayesian classification and mixture Gaussian modelling of conditional densities, edge"–"enhanced model"–"based classification and Saturation"–"Brightness quantization to extract the colored patch. This approach assumes no prior information about the color of either the subject or the background and also the position of the subject in the image. The performance of the proposed method is evaluated for the plumage color of the wild house finches. Segmentation results obtained using the implemented framework are compared with manually scored results to illustrate the performance of this system. The segmentation results show a high correlation with manually scored images. This novel framework also eliminates common problems in manual scoring of digital images such as low repeatability and inter"–"observer error.

Contributors

Agent

Created

Date Created
2013

151120-Thumbnail Image.png

Clinically relevant classification and retrieval of diabetic retinopathy images

Description

Diabetic retinopathy (DR) is a common cause of blindness occurring due to prolonged presence of diabetes. The risk of developing DR or having the disease progress is increasing over time. Despite advances in diabetes care over the years, DR remains

Diabetic retinopathy (DR) is a common cause of blindness occurring due to prolonged presence of diabetes. The risk of developing DR or having the disease progress is increasing over time. Despite advances in diabetes care over the years, DR remains a vision-threatening complication and one of the leading causes of blindness among American adults. Recent studies have shown that diagnosis based on digital retinal imaging has potential benefits over traditional face-to-face evaluation. Yet there is a dearth of computer-based systems that can match the level of performance achieved by ophthalmologists. This thesis takes a fresh perspective in developing a computer-based system aimed at improving diagnosis of DR images. These images are categorized into three classes according to their severity level. The proposed approach explores effective methods to classify new images and retrieve clinically-relevant images from a database with prior diagnosis information associated with them. Retrieval provides a novel way to utilize the vast knowledge in the archives of previously-diagnosed DR images and thereby improve a clinician's performance while classification can safely reduce the burden on DR screening programs and possibly achieve higher detection accuracy than human experts. To solve the three-class retrieval and classification problem, the approach uses a multi-class multiple-instance medical image retrieval framework that makes use of spectrally tuned color correlogram and steerable Gaussian filter response features. The results show better retrieval and classification performances than prior-art methods and are also observed to be of clinical and visual relevance.

Contributors

Agent

Created

Date Created
2012

151151-Thumbnail Image.png

Design and development of an immersive virtual reality team trainer for advance cardiac life support

Description

Technology in the modern day has ensured that learning of skills and behavior may be both widely disseminated and cheaply available. An example of this is the concept of virtual reality (VR) training. Virtual Reality training ensures that learning can

Technology in the modern day has ensured that learning of skills and behavior may be both widely disseminated and cheaply available. An example of this is the concept of virtual reality (VR) training. Virtual Reality training ensures that learning can be provided often, in a safe simulated setting, and it may be delivered in a manner that makes it engaging while negating the need to purchase special equipment. This thesis presents a case study in the form of a time critical, team based medical scenario known as Advanced Cardiac Life Support (ACLS). A framework and methodology associated with the design of a VR trainer for ACLS is detailed. In addition, in order to potentially provide an engaging experience, the simulator was designed to incorporate immersive elements and a multimodal interface (haptic, visual, and auditory). A study was conducted to test two primary hypotheses namely: a meaningful transfer of skill is achieved from virtual reality training to real world mock codes and the presence of immersive components in virtual reality leads to an increase in the performance gained. The participant pool consisted of 54 clinicians divided into 9 teams of 6 members each. The teams were categorized into three treatment groups: immersive VR (3 teams), minimally immersive VR (3 teams), and control (3 teams). The study was conducted in 4 phases from a real world mock code pretest to assess baselines to a 30 minute VR training session culminating in a final mock code to assess the performance change from the baseline. The minimally immersive team was treated as control for the immersive components. The teams were graded, in both VR and mock code sessions, using the evaluation metric used in real world mock codes. The study revealed that the immersive VR groups saw greater performance gain from pretest to posttest than the minimally immersive and control groups in case of the VFib/VTach scenario (~20% to ~5%). Also the immersive VR groups had a greater performance gain than the minimally immersive groups from the first to the final session of VFib/VTach (29% to -13%) and PEA (27% to 15%).

Contributors

Agent

Created

Date Created
2012

151963-Thumbnail Image.png

Robust implementation of NL2KR system and it's application in iRODS domain

Description

Currently, to interact with computer based systems one needs to learn the specific interface language of that system. In most cases, interaction would be much easier if it could be done in natural language. For that, we will need a

Currently, to interact with computer based systems one needs to learn the specific interface language of that system. In most cases, interaction would be much easier if it could be done in natural language. For that, we will need a module which understands natural language and automatically translates it to the interface language of the system. NL2KR (Natural language to knowledge representation) v.1 system is a prototype of such a system. It is a learning based system that learns new meanings of words in terms of lambda-calculus formulas given an initial lexicon of some words and their meanings and a training corpus of sentences with their translations. As a part of this thesis, we take the prototype NL2KR v.1 system and enhance various components of it to make it usable for somewhat substantial and useful interface languages. We revamped the lexicon learning components, Inverse-lambda and Generalization modules, and redesigned the lexicon learning algorithm which uses these components to learn new meanings of words. Similarly, we re-developed an inbuilt parser of the system in Answer Set Programming (ASP) and also integrated external parser with the system. Apart from this, we added some new rich features like various system configurations and memory cache in the learning component of the NL2KR system. These enhancements helped in learning more meanings of the words, boosted performance of the system by reducing the computation time by a factor of 8 and improved the usability of the system. We evaluated the NL2KR system on iRODS domain. iRODS is a rule-oriented data system, which helps in managing large set of computer files using policies. This system provides a Rule-Oriented interface langauge whose syntactic structure is like any procedural programming language (eg. C). However, direct translation of natural language (NL) to this interface language is difficult. So, for automatic translation of NL to this language, we define a simple intermediate Policy Declarative Language (IPDL) to represent the knowledge in the policies, which then can be directly translated to iRODS rules. We develop a corpus of 100 policy statements and manually translate them to IPDL langauge. This corpus is then used for the evaluation of NL2KR system. We performed 10 fold cross validation on the system. Furthermore, using this corpus, we illustrate how different components of our NL2KR system work.

Contributors

Agent

Created

Date Created
2013

152003-Thumbnail Image.png

Classifying everyday activity through label propagation with sparse training data

Description

We solve the problem of activity verification in the context of sustainability. Activity verification is the process of proving the user assertions pertaining to a certain activity performed by the user. Our motivation lies in incentivizing the user for engaging

We solve the problem of activity verification in the context of sustainability. Activity verification is the process of proving the user assertions pertaining to a certain activity performed by the user. Our motivation lies in incentivizing the user for engaging in sustainable activities like taking public transport or recycling. Such incentivization schemes require the system to verify the claim made by the user. The system verifies these claims by analyzing the supporting evidence captured by the user while performing the activity. The proliferation of portable smart-phones in the past few years has provided us with a ubiquitous and relatively cheap platform, having multiple sensors like accelerometer, gyroscope, microphone etc. to capture this evidence data in-situ. In this research, we investigate the supervised and semi-supervised learning techniques for activity verification. Both these techniques make use the data set constructed using the evidence submitted by the user. Supervised learning makes use of annotated evidence data to build a function to predict the class labels of the unlabeled data points. The evidence data captured can be either unimodal or multimodal in nature. We use the accelerometer data as evidence for transportation mode verification and image data as evidence for recycling verification. After training the system, we achieve maximum accuracy of 94% when classifying the transport mode and 81% when detecting recycle activity. In the case of recycle verification, we could improve the classification accuracy by asking the user for more evidence. We present some techniques to ask the user for the next best piece of evidence that maximizes the probability of classification. Using these techniques for detecting recycle activity, the accuracy increases to 93%. The major disadvantage of using supervised models is that it requires extensive annotated training data, which expensive to collect. Due to the limited training data, we look at the graph based inductive semi-supervised learning methods to propagate the labels among the unlabeled samples. In the semi-supervised approach, we represent each instance in the data set as a node in the graph. Since it is a complete graph, edges interconnect these nodes, with each edge having some weight representing the similarity between the points. We propagate the labels in this graph, based on the proximity of the data points to the labeled nodes. We estimate the performance of these algorithms by measuring how close the probability distribution of the data after label propagation is to the probability distribution of the ground truth data. Since labeling has a cost associated with it, in this thesis we propose two algorithms that help us in selecting minimum number of labeled points to propagate the labels accurately. Our proposed algorithm achieves a maximum of 73% increase in performance when compared to the baseline algorithm.

Contributors

Agent

Created

Date Created
2013

149991-Thumbnail Image.png

Compressive sensing for computer vision and image processing

Description

With the introduction of compressed sensing and sparse representation,many image processing and computer vision problems have been looked at in a new way. Recent trends indicate that many challenging computer vision and image processing problems are being solved using compressive

With the introduction of compressed sensing and sparse representation,many image processing and computer vision problems have been looked at in a new way. Recent trends indicate that many challenging computer vision and image processing problems are being solved using compressive sensing and sparse representation algorithms. This thesis assays some applications of compressive sensing and sparse representation with regards to image enhancement, restoration and classication. The first application deals with image Super-Resolution through compressive sensing based sparse representation. A novel framework is developed for understanding and analyzing some of the implications of compressive sensing in reconstruction and recovery of an image through raw-sampled and trained dictionaries. Properties of the projection operator and the dictionary are examined and the corresponding results presented. In the second application a novel technique for representing image classes uniquely in a high-dimensional space for image classification is presented. In this method, design and implementation strategy of the image classification system through unique affine sparse codes is presented, which leads to state of the art results. This further leads to analysis of some of the properties attributed to these unique sparse codes. In addition to obtaining these codes, a strong classier is designed and implemented to boost the results obtained. Evaluation with publicly available datasets shows that the proposed method outperforms other state of the art results in image classication. The final part of the thesis deals with image denoising with a novel approach towards obtaining high quality denoised image patches using only a single image. A new technique is proposed to obtain highly correlated image patches through sparse representation, which are then subjected to matrix completion to obtain high quality image patches. Experiments suggest that there may exist a structure within a noisy image which can be exploited for denoising through a low-rank constraint.

Contributors

Agent

Created

Date Created
2011

150019-Thumbnail Image.png

Efficient Java native interface for android based mobile devices

Description

Currently Java is making its way into the embedded systems and mobile devices like androids. The programs written in Java are compiled into machine independent binary class byte codes. A Java Virtual Machine (JVM) executes these classes. The Java platform

Currently Java is making its way into the embedded systems and mobile devices like androids. The programs written in Java are compiled into machine independent binary class byte codes. A Java Virtual Machine (JVM) executes these classes. The Java platform additionally specifies the Java Native Interface (JNI). JNI allows Java code that runs within a JVM to interoperate with applications or libraries that are written in other languages and compiled to the host CPU ISA. JNI plays an important role in embedded system as it provides a mechanism to interact with libraries specific to the platform. This thesis addresses the overhead incurred in the JNI due to reflection and serialization when objects are accessed on android based mobile devices. It provides techniques to reduce this overhead. It also provides an API to access objects through its reference through pinning its memory location. The Android emulator was used to evaluate the performance of these techniques and we observed that there was 5 - 10 % performance gain in the new Java Native Interface.

Contributors

Agent

Created

Date Created
2011

150112-Thumbnail Image.png

Enhancing movie comprehension for individuals who are visually impaired or blind

Description

Typically, the complete loss or severe impairment of a sense such as vision and/or hearing is compensated through sensory substitution, i.e., the use of an alternative sense for receiving the same information. For individuals who are blind or visually impaired,

Typically, the complete loss or severe impairment of a sense such as vision and/or hearing is compensated through sensory substitution, i.e., the use of an alternative sense for receiving the same information. For individuals who are blind or visually impaired, the alternative senses have predominantly been hearing and touch. For movies, visual content has been made accessible to visually impaired viewers through audio descriptions -- an additional narration that describes scenes, the characters involved and other pertinent details. However, as audio descriptions should not overlap with dialogue, sound effects and musical scores, there is limited time to convey information, often resulting in stunted and abridged descriptions that leave out many important visual cues and concepts. This work proposes a promising multimodal approach to sensory substitution for movies by providing complementary information through haptics, pertaining to the positions and movements of actors, in addition to a film's audio description and audio content. In a ten-minute presentation of five movie clips to ten individuals who were visually impaired or blind, the novel methodology was found to provide an almost two time increase in the perception of actors' movements in scenes. Moreover, participants appreciated and found useful the overall concept of providing a visual perspective to film through haptics.

Contributors

Agent

Created

Date Created
2011

151024-Thumbnail Image.png

Video deinterlacing using control grid interpolation frameworks

Description

Video deinterlacing is a key technique in digital video processing, particularly with the widespread usage of LCD and plasma TVs. This thesis proposes a novel spatio-temporal, non-linear video deinterlacing technique that adaptively chooses between the results from one dimensional control

Video deinterlacing is a key technique in digital video processing, particularly with the widespread usage of LCD and plasma TVs. This thesis proposes a novel spatio-temporal, non-linear video deinterlacing technique that adaptively chooses between the results from one dimensional control grid interpolation (1DCGI), vertical temporal filter (VTF) and temporal line averaging (LA). The proposed method performs better than several popular benchmarking methods in terms of both visual quality and peak signal to noise ratio (PSNR). The algorithm performs better than existing approaches like edge-based line averaging (ELA) and spatio-temporal edge-based median filtering (STELA) on fine moving edges and semi-static regions of videos, which are recognized as particularly challenging deinterlacing cases. The proposed approach also performs better than the state-of-the-art content adaptive vertical temporal filtering (CAVTF) approach. Along with the main approach several spin-off approaches are also proposed each with its own characteristics.

Contributors

Agent

Created

Date Created
2012