Matching Items (27)
Filtering by

Clear all filters

149681-Thumbnail Image.png
Description
The trend towards using recycled materials on new construction projects is growing as the cost for construction materials are ever increasing and the awareness of the responsibility we have to be good stewards of our environment is heightened. While recycled asphalt is sometimes used in pavements, its use as structural

The trend towards using recycled materials on new construction projects is growing as the cost for construction materials are ever increasing and the awareness of the responsibility we have to be good stewards of our environment is heightened. While recycled asphalt is sometimes used in pavements, its use as structural fill has been hindered by concern that it is susceptible to large long-term deformations (creep), preventing its use for a great many geotechnical applications. While asphalt/soil blends are often proposed as an alternative to 100% recycled asphalt fill, little data is available characterizing the geotechnical properties of recycled asphalt soil blends. In this dissertation, the geotechnical properties for five different recycled asphalt soil blends are characterized. Data includes the particle size distribution, plasticity index, creep, and shear strength for each blend. Blends with 0%, 25%, 50%, 75% and 100% recycled asphalt were tested. As the recycled asphalt material used for testing had particles sizes up to 1.5 inches, a large 18 inch diameter direct shear apparatus was used to determine the shear strength and creep characteristics of the material. The results of the testing program confirm that the creep potential of recycled asphalt is a geotechnical concern when the material is subjected to loads greater than 1500 pounds per square foot (psf). In addition, the test results demonstrate that the amount of soil blended with the recycled asphalt can greatly influence the creep and shear strength behavior of the composite material. Furthermore, there appears to be an optimal blend ratio where the composite material had better properties than either the recycled asphalt or virgin soil alone with respect to shear strength.
ContributorsSchaper, Jeffery M (Author) / Kavazanjian, Edward (Thesis advisor) / Houston, Sandra L. (Committee member) / Zapata, Claudia E (Committee member) / Arizona State University (Publisher)
Created2011
149728-Thumbnail Image.png
Description
In geotechnical engineering, measuring the unsaturated hydraulic conductivity of fine grained soils can be time consuming and tedious. The various applications that require knowledge of the unsaturated hydraulic conductivity function are great, and in geotechnical engineering, they range from modeling seepage through landfill covers to determining infiltration of water

In geotechnical engineering, measuring the unsaturated hydraulic conductivity of fine grained soils can be time consuming and tedious. The various applications that require knowledge of the unsaturated hydraulic conductivity function are great, and in geotechnical engineering, they range from modeling seepage through landfill covers to determining infiltration of water under a building slab. The unsaturated hydraulic conductivity function can be measured using various direct and indirect techniques. The instantaneous profile method has been found to be the most promising unsteady state method for measuring the unsaturated hydraulic conductivity function for fine grained soils over a wide range of suction values. The instantaneous profile method can be modified by using different techniques to measure suction and water content and also through the way water is introduced or removed from the soil profile. In this study, the instantaneous profile method was modified by creating duplicate soil samples compacted into cylindrical tubes at two different water contents. The techniques used in the duplicate method to measure the water content and matric suction included volumetric moisture probes, manual water content measurements, and filter paper tests. The experimental testing conducted in this study provided insight into determining the unsaturated hydraulic conductivity using the instantaneous profile method for a sandy clay soil and recommendations are provided for further evaluation. Overall, this study has demonstrated that the presence of cracks has no significant impact on the hydraulic behavior of soil in high suction ranges. The results of this study do not examine the behavior of cracked soil unsaturated hydraulic conductivity at low suction and at moisture contents near saturation.
ContributorsJacquemin, Sean Christopher (Author) / Zapata, Claudia (Thesis advisor) / Houston, Sandra (Committee member) / Kavazanjian, Edward (Committee member) / Arizona State University (Publisher)
Created2011
150160-Thumbnail Image.png
Description
The importance of unsaturated soil behavior stems from the fact that a vast majority of infrastructures are founded on unsaturated soils. Research has recently been concentrated on unsaturated soil properties. In the evaluation of unsaturated soils, researchers agree that soil water retention characterized by the soil water characteristic curve (SWCC)

The importance of unsaturated soil behavior stems from the fact that a vast majority of infrastructures are founded on unsaturated soils. Research has recently been concentrated on unsaturated soil properties. In the evaluation of unsaturated soils, researchers agree that soil water retention characterized by the soil water characteristic curve (SWCC) is among the most important factors when assessing fluid flow, volume change and shear strength for these soils. The temperature influence on soil moisture flow is a major concern in the design of important engineering systems such as barriers in underground repositories for radioactive waste disposal, ground-source heat pump (GSHP) systems, evapotranspirative (ET) covers and pavement systems.. Accurate modeling of the temperature effect on the SWCC may lead to reduction in design costs, simpler constructability, and hence, more sustainable structures. . The study made use of two possible approaches to assess the temperature effect on the SWCC. In the first approach, soils were sorted from a large soil database into families of similar properties but located on sites with different MAAT. The SWCCs were plotted for each family of soils. Most families of soils showed a clear trend indicating the influence of temperature on the soil water retention curve at low degrees of saturation.. The second approach made use of statistical analysis. It was demonstrated that the suction increases as the MAAT decreases. The statistical analysis showed that even though the plasticity index proved to have the greatest influence on suction, the mean annual air temperature effect proved not to be negligible. In both approaches, a strong relationship between temperature, suction and soil properties was observed. Finally, a comparison of the model based on the mean annual air temperature environmental factor was compared to another model that makes use of the Thornthwaite Moisture Index (TMI) to estimate the environmental effects on the suction of unsaturated soils. Results showed that the MAAT can be a better indicator when compared to the TMI found but the results were inconclusive due to the lack of TMI data available.
ContributorsElkeshky, Maie Mohamed (Author) / Zapata, Claudia E (Thesis advisor) / Houston, Sandra (Committee member) / Kavazanjian, Edward (Committee member) / Arizona State University (Publisher)
Created2011
150127-Thumbnail Image.png
Description
This dissertation describes development of a procedure for obtaining high quality, optical grade sand coupons from frozen sand specimens of Ottawa 20/30 sand for image processing and analysis to quantify soil structure along with a methodology for quantifying the microstructure from the images. A technique for thawing and stabilizing

This dissertation describes development of a procedure for obtaining high quality, optical grade sand coupons from frozen sand specimens of Ottawa 20/30 sand for image processing and analysis to quantify soil structure along with a methodology for quantifying the microstructure from the images. A technique for thawing and stabilizing frozen core samples was developed using optical grade Buehler® Epo-Tek® epoxy resin, a modified triaxial cell, a vacuum/reservoir chamber, a desiccator, and a moisture gauge. The uniform epoxy resin impregnation required proper drying of the soil specimen, application of appropriate confining pressure and vacuum levels, and epoxy mixing, de-airing and curing. The resulting stabilized sand specimen was sectioned into 10 mm thick coupons that were planed, ground, and polished with progressively finer diamond abrasive grit levels using the modified Allied HTP Inc. polishing method so that the soil structure could be accurately quantified using images obtained with the use of an optical microscopy technique. Illumination via Bright Field Microscopy was used to capture the images for subsequent image processing and sand microstructure analysis. The quality of resulting images and the validity of the subsequent image morphology analysis hinged largely on employment of a polishing and grinding technique that resulted in a flat, scratch free, reflective coupon surface characterized by minimal microstructure relief and good contrast between the sand particles and the surrounding epoxy resin. Subsequent image processing involved conversion of the color images first to gray scale images and then to binary images with the use of contrast and image adjustments, removal of noise and image artifacts, image filtering, and image segmentation. Mathematical morphology algorithms were used on the resulting binary images to further enhance image quality. The binary images were then used to calculate soil structure parameters that included particle roundness and sphericity, particle orientation variability represented by rose diagrams, statistics on the local void ratio variability as a function of the sample size, and the local void ratio distribution histograms using Oda's method and Voronoi tessellation method, including the skewness, kurtosis, and entropy of a gamma cumulative probability distribution fit to the local void ratio distribution.
ContributorsCzupak, Zbigniew David (Author) / Kavazanjian, Edward (Thesis advisor) / Zapata, Claudia (Committee member) / Houston, Sandra (Committee member) / Arizona State University (Publisher)
Created2011
150101-Thumbnail Image.png
Description
As a prelude to a study on the post-liquefaction properties and structure of soil, an investigation of ground freezing as an undisturbed sampling technique was conducted to investigate the ability of this sampling technique to preserve soil structure and properties. Freezing the ground is widely regarded as an appropriate technique

As a prelude to a study on the post-liquefaction properties and structure of soil, an investigation of ground freezing as an undisturbed sampling technique was conducted to investigate the ability of this sampling technique to preserve soil structure and properties. Freezing the ground is widely regarded as an appropriate technique to recover undisturbed samples of saturated cohesionless soil for laboratory testing, despite the fact that water increases in volume when frozen. The explanation generally given for the preservation of soil structure using the freezing technique was that, as long as the freezing front advanced uni-directionally, the expanding pore water is expelled ahead of the freezing front as the front advances. However, a literature review on the transition of water to ice shows that the volume of ice expands approximately nine percent after freezing, bringing into question the hypothesized mechanism and the ability of a frozen and then thawed specimen to retain the properties and structure of the soil in situ. Bench-top models were created by pluviation of sand. The soil in the model was then saturated and subsequently frozen. Freezing was accomplished using a pan filled with alcohol and dry ice placed on the surface of the sand layer to induce a unidirectional freezing front in the sample container. Coring was used to recover frozen samples from model containers. Recovered cores were then placed in a triaxial cell, thawed, and subjected to consolidated undrained loading. The stress-strain-strength behavior of the thawed cores was compared to the behavior of specimens created in a split mold by pluviation and then saturated and sheared without freezing and thawing. The laboratory testing provide insight to the impact of freezing and thawing on the properties of cohesionless soil.
ContributorsKatapa, Kanyembo (Author) / Kavazanjian, Edward (Thesis advisor) / Houston, Sandra (Committee member) / Zapata, Claudia (Committee member) / Arizona State University (Publisher)
Created2011
152368-Thumbnail Image.png
Description
The objective of the research is to develop guidelines for identifying when settlement or seismic loading presents a threat to the integrity of geosynthetic elements for both side slope and cover systems in landfills, and advance further investigation for parameters which influence the strains in the barrier systems. A numerical

The objective of the research is to develop guidelines for identifying when settlement or seismic loading presents a threat to the integrity of geosynthetic elements for both side slope and cover systems in landfills, and advance further investigation for parameters which influence the strains in the barrier systems. A numerical model of landfill with different side slope inclinations are developed by the two-dimensional explicit finite difference program FLAC 7.0, beam elements with a hyperbolic stress-strain relationship, zero moment of inertia, and interface elements on both sides were used to model the geosynthetic barrier systems. The resulting numerical model demonstrates the load-displacement behavior of geosynthetic interfaces, including whole liner systems and dynamic shear response. It is also through the different results in strains from the influences of slope angle and interface friction of geosynthetic liners to develop implications for engineering practice and recommendations for static and seismic design of waste containment systems.
ContributorsWu, Xuan (Author) / Kavazanjian, Edward (Thesis advisor) / Zapata, Claudia (Committee member) / Houston, Sandra (Committee member) / Arizona State University (Publisher)
Created2013
151506-Thumbnail Image.png
Description
Microbially induced calcium carbonate precipitation (MICP) is attracting increasing attention as a sustainable means of soil improvement. While there are several possible MICP mechanisms, microbial denitrification has the potential to become one of the preferred methods for MICP because complete denitrification does not produce toxic byproducts, readily occurs under anoxic

Microbially induced calcium carbonate precipitation (MICP) is attracting increasing attention as a sustainable means of soil improvement. While there are several possible MICP mechanisms, microbial denitrification has the potential to become one of the preferred methods for MICP because complete denitrification does not produce toxic byproducts, readily occurs under anoxic conditions, and potentially has a greater carbonate yield per mole of organic electron donor than other MICP processes. Denitrification may be preferable to ureolytic hydrolysis, the MICP process explored most extensively to date, as the byproduct of denitrification is benign nitrogen gas, while the chemical pathways involved in hydrolytic ureolysis processes produce undesirable and potentially toxic byproducts such as ammonium (NH4+). This thesis focuses on bacterial denitrification and presents preliminary results of bench-scale laboratory experiments on denitrification as a candidate calcium carbonate precipitation mechanism. The bench-scale bioreactor and column tests, conducted using the facultative anaerobic bacterium Pseudomonas denitrificans, show that calcite can be precipitated from calcium-rich pore water using denitrification. Experiments also explore the potential for reducing environmental impacts and lowering costs associated with denitrification by reducing the total dissolved solids in the reactors and columns, optimizing the chemical matrix, and addressing the loss of free calcium in the form of calcium phosphate precipitate from the pore fluid. The potential for using MICP to sequester radionuclides and metal contaminants that are migrating in groundwater is also investigated. In the sequestration process, divalent cations and radionuclides are incorporated into the calcite structure via substitution, forming low-strontium calcium carbonate minerals that resist dissolution at a level similar to that of calcite. Work by others using the bacterium Sporosarcina pasteurii has suggested that in-situ sequestration of radionuclides and metal contaminants can be achieved through MICP via hydrolytic ureolysis. MICP through bacterial denitrification seems particularly promising as a means for sequestering radionuclides and metal contaminants in anoxic environments due to the anaerobic nature of the process and the ubiquity of denitrifying bacteria in the subsurface.
ContributorsHamdan, Nasser (Author) / Kavazanjian, Edward (Thesis advisor) / Rittmann, Bruce E. (Thesis advisor) / Shock, Everett (Committee member) / Arizona State University (Publisher)
Created2013
152073-Thumbnail Image.png
Description
The effect of earthquake-induced liquefaction on the local void ratio distribution of cohesionless soil is evaluated using x-ray computed tomography (CT) and an advanced image processing software package. Intact, relatively undisturbed specimens of cohesionless soil were recovered before and after liquefaction by freezing and coring soil deposits created by pluviation

The effect of earthquake-induced liquefaction on the local void ratio distribution of cohesionless soil is evaluated using x-ray computed tomography (CT) and an advanced image processing software package. Intact, relatively undisturbed specimens of cohesionless soil were recovered before and after liquefaction by freezing and coring soil deposits created by pluviation and by sedimentation through water. Pluviated soil deposits were liquefied in the small geotechnical centrifuge at the University of California at Davis shared-use National Science Foundation (NSF)-supported Network for Earthquake Engineering Simulation (NEES) facility. A soil deposit created by sedimentation through water was liquefied on a small shake table in the Arizona State University geotechnical laboratory. Initial centrifuge tests employed Ottawa 20-30 sand but this material proved to be too coarse to liquefy in the centrifuge. Therefore, subsequent centrifuge tests employed Ottawa F60 sand. The shake table test employed Ottawa 20-30 sand. Recovered cores were stabilized by impregnation with optical grade epoxy and sent to the University of Texas at Austin NSF-supported facility at the University of Texas at Austin for high-resolution CT scanning of geologic media. The local void ratio distribution of a CT-scanned core of Ottawa 20-30 sand evaluated using Avizo® Fire, a commercially available advanced program for image analysis, was compared to the local void ratio distribution established on the same core by analysis of optical images to demonstrate that analysis of the CT scans gave similar results to optical methods. CT scans were subsequently conducted on liquefied and not-liquefied specimens of Ottawa 20-30 sand and Ottawa F60 sand. The resolution of F60 specimens was inadequate to establish the local void ratio distribution. Results of the analysis of the Ottawa 20-30 specimens recovered from the model built for the shake table test showed that liquefaction can substantially influence the variability in local void ratio, increasing the degree of non-homogeneity in the specimen.
ContributorsGutierrez, Angel (Author) / Kavazanjian, Edward (Thesis advisor) / Houston, Sandra (Committee member) / Zapata, Claudia (Committee member) / Arizona State University (Publisher)
Created2013
151153-Thumbnail Image.png
Description
Due to the lack of understanding of soil thermal behavior, rules-of-thumb and generalized procedures are typically used to guide building professionals in the design of ground coupled heat pump systems. This is especially true when sizing the ground heat exchanger (GHE) loop. Unfortunately, these generalized procedures often encourage building engineers

Due to the lack of understanding of soil thermal behavior, rules-of-thumb and generalized procedures are typically used to guide building professionals in the design of ground coupled heat pump systems. This is especially true when sizing the ground heat exchanger (GHE) loop. Unfortunately, these generalized procedures often encourage building engineers to adopt a conservative design approach resulting in the gross over-sizing of the GHE, thus drastically increasing their installation cost. This conservative design approach is particularly prevalent for buildings located in hot and arid climates, where the soils are often granular and where the water table tends to exist deep below the soil surface. These adverse soil conditions reduce the heat dissipation efficiency of the GHE and have hindered the adoption of ground coupled heat pump systems in such climates. During cooling mode operation, heat is extracted from the building and rejected into the ground via the GHE. Prolonged heat dissipation into the ground can result in a coupled flow of both heat and moisture, causing the moisture to migrate away from the GHE piping. This coupled flow phenomenon causes the soil near the GHE to dry out and results in the degradation of the GHE heat dissipation capacity. Although relatively simple techniques of backfilling the GHE have been used in practice to mitigate such coupled effects, methods of improving the thermal behavior of the backfill region around the GHE, especially in horizontal systems, have not been extensively studied. This thesis presents an experimental study of heat dissipation from a horizontal GHE, buried in two backfill materials: (1) dry sand, and (2) wax-sand composite mixture. The HYDRUS software was then used to numerically model the temperature profiles associated with the aforementioned backfill conditions, and the influence of the contact resistance at the GHE-backfill interface was studied. The modeling strategy developed in HYDRUS was proven to be adequate in predicting the thermal performance of GHE buried in dry sand. However, when predicting the GHE heat dissipation in the wax-sand backfill, significant discrepancies between model prediction and experimental results still exist even after calibrating the model by including a term for the contact resistance. Overall, the thermal properties of the backfill were determined to be a key determinant of the GHE heat dissipation capacity. In particular, the wax-sand backfill was estimated to dissipate 50-60% more heat than dry sand backfill.
ContributorsDAngelo, Kurtis (Author) / Reddy, T Agami (Thesis advisor) / Bryan, Harvey (Committee member) / Kavazanjian, Edward (Committee member) / Arizona State University (Publisher)
Created2012
171518-Thumbnail Image.png
Description
Two challenges in the implementation of enzyme induced carbonate precipitation(EICP) are the cost of enzyme and the variability of the enzyme. Urease enzyme costs can be lowered drastically with the use of crude extract from plant materials, but experience has shown variability in the source of the crude urease enzyme, the crude urease

Two challenges in the implementation of enzyme induced carbonate precipitation(EICP) are the cost of enzyme and the variability of the enzyme. Urease enzyme costs can be lowered drastically with the use of crude extract from plant materials, but experience has shown variability in the source of the crude urease enzyme, the crude urease enzyme extraction methods, and the concentration of the EICP solution can cause significant variability in the efficacy of the EICP solution. This thesis examines the variability in the efficacy of crude enzyme derived from jack beans (Canavalia ensiformis) and sword beans (Canavalia gladiata), two of the most commonly used sources of urease enzyme for EICP. The sources of variability investigated herein include the crude extraction method (including the effect of the bean husks on extraction) and different chemical constituent concentrations. These effects were assessed using enzyme activity measurements and precipitation efficiency tests. The activity tests were performed via spectrophotometry using Nessler's reagent. The precipitation tests looked at the influence of chemical constituent concentrations of 0.67 M calcium chloride and 1 M urea with non-fat dry milk in the EICP solutions and a higher concentration solution with chemical constituent concentrations of 2 M for both calcium chloride and urea with non-fat dry milk. The high concentration solution was selected based on preliminary testing results to maximize carbonate precipitation in one cycle of treatment. Significant sources of a decline in activity (and increase in variation) of the crude urease enzyme were found in extraction from sword beans with husks, high chemical constituent concentrations, and juicing instead of cheesecloth filtration. This thesis also examines the accuracy of commonly used correlation factors for converting electrical conductivity to urease enzyme activity. Crude jack bean and sword bean urease enzyme activity measurement via electrical conductivity was found to have a correlation coefficient that differed from the previously reported correlation when compared to activity measured via the more accurate spectrophotometry using Nessler’s reagent measurements.
ContributorsPearson, Rayanna (Author) / Kavazanjian, Edward (Thesis advisor) / Khodadadi Tirkolaei, Hamed (Committee member) / Salifu, Emmanuel (Committee member) / Arizona State University (Publisher)
Created2022