Matching Items (6)
Filtering by

Clear all filters

156403-Thumbnail Image.png
Description
Commercial Li-ion cells (18650: Li4Ti5O12 anodes and LiCoO2 cathodes) were subjected to simulated Electric Vehicle (EV) conditions using various driving patterns such as aggressive driving, highway driving, air conditioning load, and normal city driving. The particular drive schedules originated from the Environment Protection Agency (EPA), including the SC-03, UDDS, HWFET,

Commercial Li-ion cells (18650: Li4Ti5O12 anodes and LiCoO2 cathodes) were subjected to simulated Electric Vehicle (EV) conditions using various driving patterns such as aggressive driving, highway driving, air conditioning load, and normal city driving. The particular drive schedules originated from the Environment Protection Agency (EPA), including the SC-03, UDDS, HWFET, US-06 drive schedules, respectively. These drive schedules have been combined into a custom drive cycle, named the AZ-01 drive schedule, designed to simulate a typical commute in the state of Arizona. The battery cell cycling is conducted at various temperature settings (0, 25, 40, and 50 °C). At 50 °C, under the AZ-01 drive schedule, a severe inflammation was observed in the cells that led to cell failure. Capacity fading under AZ-01 drive schedule at 0 °C per 100 cycles is found to be 2%. At 40 °C, 3% capacity fading is observed per 100 cycles under the AZ-01 drive schedule. Modeling and prediction of discharge rate capability of batteries is done using Electrochemical Impedance Spectroscopy (EIS). High-frequency resistance values (HFR) increased with cycling under the AZ-01 drive schedule at 40 °C and 0 °C. The research goal for this thesis is to provide performance analysis and life cycle data for Li4Ti5O12 (Lithium Titanite) battery cells in simulated Arizona conditions. Future work involves an evaluation of second-life opportunities for cells that have met end-of-life criteria in EV applications.
ContributorsAbdelhay, Reem (Author) / Kannan, Arunachala Mada (Thesis advisor) / Wishart, Jeffrey (Committee member) / Nam, Changho (Committee member) / Arizona State University (Publisher)
Created2018
154802-Thumbnail Image.png
Description
Increasing demand for reducing the stress on fossil fuels has motivated automotive industries to shift towards sustainable modes of transport through electric and hybrid electric vehicles. Most fuel efficient cars of year 2016 are hybrid vehicles as reported by environmental protection agency. Hybrid vehicles operate with internal combustion engine and

Increasing demand for reducing the stress on fossil fuels has motivated automotive industries to shift towards sustainable modes of transport through electric and hybrid electric vehicles. Most fuel efficient cars of year 2016 are hybrid vehicles as reported by environmental protection agency. Hybrid vehicles operate with internal combustion engine and electric motors powered by batteries, and can significantly improve fuel economy due to downsizing of the engine. Whereas, Plug-in hybrids (PHEVs) have an additional feature compared to hybrid vehicles i.e. recharging batteries through external power outlets. Among hybrid powertrains, lithium-ion batteries have emerged as a major electrochemical storage source for propulsion of vehicles.

In PHEVs, batteries operate under charge sustaining and charge depleting mode based on torque requirement and state of charge. In the current article, 26650 lithium-ion cells were cycled extensively at 25 and 50 oC under charge sustaining mode to monitor capacity and cell impedance values followed by analyzing the Lithium iron phosphate (LiFePO4) cathode material by X-ray diffraction analysis (XRD). High frequency resistance measured by electrochemical impedance spectroscopy was found to increase significantly under high temperature cycling, leading to power fading. No phase change in LiFePO4 cathode material is observed after 330 cycles at elevated temperature under charge sustaining mode from the XRD analysis. However, there was significant change in crystallite size of the cathode active material after charge/discharge cycling with charge sustaining mode. Additionally, 18650 lithium-ion cells were tested under charge depleting mode to monitor capacity values.
ContributorsBadami, Pavan Pramod (Author) / Kannan, Arunachala Mada (Thesis advisor) / Huang, Huei Ping (Thesis advisor) / Ren, Yi (Committee member) / Arizona State University (Publisher)
Created2016
154987-Thumbnail Image.png
Description
The majority of the natural issues the world is confronting today is because of our dependence on fossil fuels and the increase in CO2 emissions. The alternative solution for this problem is the use of renewable energy for the energy production, but these are uncertain energy sources. So, the combination

The majority of the natural issues the world is confronting today is because of our dependence on fossil fuels and the increase in CO2 emissions. The alternative solution for this problem is the use of renewable energy for the energy production, but these are uncertain energy sources. So, the combination of reducing carbon dioxide with the use of renewable energy sources is the finest way to mitigate this problem. Electrochemical reduction of carbon dioxide (ERC) is a reasonable approach as it eliminates as well as utilizes the carbon dioxide as a source for generating valuable products.

In this study, development of electrochemical reactor, characterization of membrane electrode assembly (MEA) and analysis of electrochemical reduction of carbon dioxide (ERC) is discussed. Electrodes using various catalyst materials in solid polymer based electrolyte (SPE) along with gas diffusion layer (GDL) are developed. The prepared membrane electrodes are characterized under ex-situ conditions using scanning electron microscopy (SEM). The membranes are later placed in the electrochemical reactor for the in-situ characterization to assess the performance of the membrane electrode assembly.

The electrodes are processed by airbrushing the metal particles on the nafion membrane and then are electrochemically characterized by linear sweep voltammetry. The anode was kept constant with platinum whereas the cathode was examined with compositions of different metal catalysts. The products formed subsequently are analyzed using gas chromatography (GC) and Residual gas analysis (RGA). Hydrogen (H2) and carbon monoxide (CO) are detected using GC while the hydrocarbons are detected by performing quantitative analysis using RGA. The preliminary experiments gave very encouraging results. However, more work needs to be done to achieve new heights.
ContributorsVenka, Rishika (Author) / Kannan, Arunachala Mada (Thesis advisor) / Huang, Huei-Ping (Thesis advisor) / Phelan, Patrick (Committee member) / Arizona State University (Publisher)
Created2016
155734-Thumbnail Image.png
Description
The automotive industry is committed to moving towards sustainable modes of transportation through electrified vehicles to improve the fuel economy with a reduced carbon footprint. In this context, battery-operated hybrid, plug-in hybrid and all-electric vehicles (EVs) are becoming commercially viable throughout the world. Lithium-ion (Li-ion) batteries with various active materials,

The automotive industry is committed to moving towards sustainable modes of transportation through electrified vehicles to improve the fuel economy with a reduced carbon footprint. In this context, battery-operated hybrid, plug-in hybrid and all-electric vehicles (EVs) are becoming commercially viable throughout the world. Lithium-ion (Li-ion) batteries with various active materials, electrolytes, and separators are currently being used for electric vehicle applications. Specifically, lithium-ion batteries with Lithium Iron Phosphate (LiFePO4 - LFP) and Lithium Nickel Manganese Cobalt Oxide (Li(NiMnCo)O2 - NMC) cathodes are being studied mainly due to higher cycle life and higher energy density values, respectively. In the present work, 26650 Li-ion batteries with LFP and NMC cathodes were evaluated for Plug-in Hybrid Electric Vehicle (PHEV) applications, using the Federal Urban Driving Schedule (FUDS) to discharge the batteries with 20 A current in simulated Arizona, USA weather conditions (50 ⁰C & <10% RH). In addition, 18650 lithium-ion batteries (LFP cathode material) were evaluated under PHEV mode with 30 A current to accelerate the ageing process, and to monitor the capacity values and material degradation. To offset the high initial cost of the batteries used in electric vehicles, second-use of these retired batteries is gaining importance, and the possibility of second-life use of these tested batteries was also examined under constant current charge/discharge cycling at 50 ⁰C.

The capacity degradation rate under the PHEV test protocol for batteries with NMC-based cathode (16% over 800 cycles) was twice the degradation compared to batteries with LFP-based cathode (8% over 800 cycles), reiterating the fact that batteries with LFP cathodes have a higher cycle life compared to other lithium battery chemistries. Also, the high frequency resistance measured by electrochemical impedance spectroscopy (EIS) was found to increase significantly with cycling, leading to power fading for both the NMC- as well as LFP-based batteries. The active materials analyzed using X-ray diffraction (XRD) showed no significant phase change in the materials after 800 PHEV cycles. For second-life tests, these batteries were subjected to a constant charge-discharge cycling procedure to analyze the capacity degradation and materials characteristics.
ContributorsVaidya, Rutvik Milind (Author) / Kannan, Arunachala Mada (Thesis advisor) / Alford, Terry (Committee member) / Wishart, Jeffrey (Committee member) / Arizona State University (Publisher)
Created2017
158346-Thumbnail Image.png
Description
Photocatalytic activity of titanium dioxide (titania or TiO2) offers enormous potential in solving energy and environmental problems. Immobilization of titania nanoparticles on inert substrates is an effective way of utilizing its photocatalytic activity since nanoparticles enable high mass-transport, and immobilization avoids post-treatment separation. For competitive photocatalytic performance, the morphology of

Photocatalytic activity of titanium dioxide (titania or TiO2) offers enormous potential in solving energy and environmental problems. Immobilization of titania nanoparticles on inert substrates is an effective way of utilizing its photocatalytic activity since nanoparticles enable high mass-transport, and immobilization avoids post-treatment separation. For competitive photocatalytic performance, the morphology of the substrate can be engineered to enhance mass-transport and light accessibility. In this work, two types of fiber architectures (i.e., dispersed polymer/titania phase or D-phase, and multi-phase polymer-core/composite-shell fibers or M-phase) were explored as effective substrate solutions for anchoring titania. These fibers were fabricated using a low-cost and scalable fiber spinning technique. Polymethyl methacrylate (PMMA) was selected as the substrate material due to its ultraviolet (UV) transparency and stability against oxidative radicals. The work systematically investigates the influence of the fiber porosity on mass-transport and UV light scattering. The properties of the fabricated fiber systems were characterized by scanning electron microscopy (SEM), Brunauer–Emmett–Teller (BET), UV-vis spectrophotometry (UV-vis), and mechanical analysis. The photocatalytic performance was characterized by monitoring the decomposition of methylene blue (MB) under UV (i.e., 365 nm) light. Fabrication of photocatalytic support structures was observed to be an optimization problem where porosity improved mass transport but reduced UV accessibility. The D-phase fibers demonstrated the highest MB degradation rate (i.e., 0.116 min-1) due to high porosity (i.e., 33.2 m2/g). The M-phase fibers reported a better degradation rate compared to a D-phase fibers due to higher UV accessibility efficiency.
ContributorsKanth, Namrata (Author) / Song, Kenan (Thesis advisor) / Tongay, Sefaattin (Thesis advisor) / Kannan, Arunachala Mada (Committee member) / Arizona State University (Publisher)
Created2020
161551-Thumbnail Image.png
Description
Gas Diffusion Layers (GDL) based on PUREBLACK® carbon and VULCAN® (XC72R) carbon along with catalyst coated membranes were used to fabricate the membrane electrode assemblies for use in proton exchange membrane fuel cells (PEMFCs). Polyethylene glycol was used as the pore-forming agent on the microporous layer to improve the lower

Gas Diffusion Layers (GDL) based on PUREBLACK® carbon and VULCAN® (XC72R) carbon along with catalyst coated membranes were used to fabricate the membrane electrode assemblies for use in proton exchange membrane fuel cells (PEMFCs). Polyethylene glycol was used as the pore-forming agent on the microporous layer to improve the lower and higher relative humidity performance of the fuel cells. Accelerated stress tests based on the dissolution effect of GDLs were conducted and the long-term performance of the GDLs was evaluated. A single-cell fuel cell was used to evaluate the effect of porosity of the micro-porous layer and the effect of different types of carbon powder on the performance of the fuel cell at different operating relative humidity conditions and compared with commercial GDLs.Both PUREBLACK® and VULCAN® (XC72R) based GDLs show crack-free surface morphology in the Scanning electron microscopy and hydrophobic characteristics in the contact angle measurements. The fuel cell performance is evaluated under relative humidity conditions of 60 and 100 % using H2/O2 and H2/Air at 70 ℃ and the durability is also evaluated for the sample with and without 30% PEG for both carbons. The pristine PUREBLACK® based GDL sample with 30% pore-forming agent (total pore volume of 1.72 cc.g-1) demonstrated the highest performance (peak power densities of 432 and 444 mW.cm-2 at 100 and 60 % RH respectively, using H2/Air). There was a significant increase in the macropores when GDLs are aged in H2O2 and the contact angle dropped to about 14 and 95° for PUREBLACK® and VULCAN® carbon, respectively. Overall PUREBLACK® based GDLs performed the best after ageing both in H2O2 and H2O (average performance degradation of 8% in H2O2 and 8.25% in H2O).
ContributorsChauhan, Nitin (Author) / Kannan, Arunachala Mada (Thesis advisor) / Phelan, Patrick (Committee member) / Nian, Qiong (Committee member) / Arizona State University (Publisher)
Created2021