Matching Items (5)
Filtering by

Clear all filters

171422-Thumbnail Image.png
Description
Marine algae are a rich source of bioactive halogenated natural products. Thepresence of these marine natural products has largely been attributed to their biosynthesis by organisms in these environments through a variety of different halogenation mechanisms. One of the key contributors in these halogenation processes are from the vanadium haloperoxidases (VHPOs) class of

Marine algae are a rich source of bioactive halogenated natural products. Thepresence of these marine natural products has largely been attributed to their biosynthesis by organisms in these environments through a variety of different halogenation mechanisms. One of the key contributors in these halogenation processes are from the vanadium haloperoxidases (VHPOs) class of enzymes. VHPOs perform an electrophilic halogenation through the oxidation of halide ions with hydrogen peroxide as the terminal oxidant. This technique produces an electrophilic halide equivalent that can directly halogenate organic substrates. Despite the numerous known reaction capabilities of this enzyme class, their construction of intramolecular ring formation between a carbon and nitrogen atom has remained unreported. Herein, this study presents a development of a ‘new to nature’ chemical reaction for lactam synthesis. In pursuit of this type of reaction, it was discovered that wild type VHPOs (e.g., Curvularia inaequalis, Corallina officinalis, Corallina pilulifera, Acaryochloria marina) produce halogenated iminolactone compounds from acyclic amides in excellent yields and selectivity greater than 99 percent yield. The extension to chlorocyclizations will also be discussed.
ContributorsMerker, Kayla Rose (Author) / Biegasiewicz, Kyle (Thesis advisor) / Ackerman-Biegasiewicz, Laura (Committee member) / Mills, Jeremy (Committee member) / Arizona State University (Publisher)
Created2022
193377-Thumbnail Image.png
Description
Insulator-based dielectrophoresis (iDEP) has attracted considerable attention due to its ability to precisely capture and manipulate nanoparticles and biomolecules. A distinctive approach for effective manipulation of nanometer-sized proteins employing iDEP technique by generating higher electric field (E) and gradient (??2) in the iDEP microfluidic devices is delineated. Strategies to generate

Insulator-based dielectrophoresis (iDEP) has attracted considerable attention due to its ability to precisely capture and manipulate nanoparticles and biomolecules. A distinctive approach for effective manipulation of nanometer-sized proteins employing iDEP technique by generating higher electric field (E) and gradient (??2) in the iDEP microfluidic devices is delineated. Strategies to generate higher ??2 in the iDEP devices were outlined using numerical simulations. Intriguingly, the numerical simulation results demonstrated that by decreasing the post-to-post gap in the iDEP microfluidic devices, the ??2 was increased by ⁓12 fold. Furthermore, the inclusion of channel constrictions, such as rectangular constriction or curved constriction into the straight channel iDEP microfluidic device led to a significant increase in ??2. In addition, the inclusion of rectangular constrictions in the straight channel iDEP microfluidic device resulted in a greater increase in ??2 compared to the incorporation of curved constrictions in the same device. Moreover, the straight channel device with horizontal post-to-post gap of 20 μm and vertical post-to-post gap of 10 μm generated the lowest ??2 and the ??2 was uniform across the device. The rectangular constriction device with horizontal and vertical post-to-post gap of 5 μm generated the highest ??2 and the ??2 was non-uniform across the device. Subsequently, suitable candidate devices were fabricated using soft lithography as well as high resolution 3D printing and the DEP behavior of ferritin examined under various experimental conditions. Positive streaming DEP could be observed for ferritin at low frequency in the device generating the lowest ??2, whereas at higher frequency of 10 kHz no DEP trapping characteristics were apparent in the same device. Importantly, in the device geometry resulting in the highest ??2 at 10 kHz, labeled ferritin exhibited pDEPtrapping characteristics. This is an indication that the DEP force superseded diffusion and became the dominant force.
ContributorsMAHMUD, SAMIRA (Author) / Ros, Alexandra (Thesis advisor) / Borges, Chad (Committee member) / Mills, Jeremy (Committee member) / Arizona State University (Publisher)
Created2024
156512-Thumbnail Image.png
Description
Alzheimer’s disease is a major problem affecting over 5.7 million Americans. Although much is known about the effects of this neurogenerative disease, the exact pathogenesis is still unknown. One very important characteristic of Alzheimer’s is the accumulation of beta amyloid protein which often results in plaques. To understand these beta

Alzheimer’s disease is a major problem affecting over 5.7 million Americans. Although much is known about the effects of this neurogenerative disease, the exact pathogenesis is still unknown. One very important characteristic of Alzheimer’s is the accumulation of beta amyloid protein which often results in plaques. To understand these beta amyloid proteins better, antibody fragments may be used to bind to these oligomers and potentially reduce the effects of Alzheimer’s disease.

This thesis focused on the expression and crystallization the fragment antigen binding antibody fragment A4. A fragment antigen binding fragment was chosen to be worked with as it is more stable than many other antibody fragments. A4 is important in Alzheimer’s disease as it is able to identify toxic beta amyloid.
ContributorsColasurd, Paige (Author) / Nannenga, Brent (Thesis advisor) / Mills, Jeremy (Committee member) / Varman, Arul (Committee member) / Arizona State University (Publisher)
Created2018
157920-Thumbnail Image.png
Description
Fusion proteins that specifically interact with biochemical marks on chromosomes represent a new class of synthetic transcriptional regulators that decode cell state information rather than deoxyribose nucleic acid (DNA) sequences. In multicellular organisms, information relevant to cell state, tissue identity, and oncogenesis is often encoded as biochemical modifications of histones,

Fusion proteins that specifically interact with biochemical marks on chromosomes represent a new class of synthetic transcriptional regulators that decode cell state information rather than deoxyribose nucleic acid (DNA) sequences. In multicellular organisms, information relevant to cell state, tissue identity, and oncogenesis is often encoded as biochemical modifications of histones, which are bound to DNA in eukaryotic nuclei and regulate gene expression states. In 2011, Haynes et al. showed that a synthetic regulator called the Polycomb chromatin Transcription Factor (PcTF), a fusion protein that binds methylated histones, reactivated an artificially-silenced luciferase reporter gene. These synthetic transcription activators are derived from the polycomb repressive complex (PRC) and associate with the epigenetic silencing mark H3K27me3 to reactivate the expression of silenced genes. It is demonstrated here that the duration of epigenetic silencing does not perturb reactivation via PcTF fusion proteins. After 96 hours PcTF shows the strongest reactivation activity. A variant called Pc2TF, which has roughly double the affinity for H3K27me3 in vitro, reactivated the silenced luciferase gene by at least 2-fold in living cells.
ContributorsVargas, Daniel A. (Author) / Haynes, Karmella (Thesis advisor) / Wang, Xiao (Committee member) / Mills, Jeremy (Committee member) / Arizona State University (Publisher)
Created2019
158904-Thumbnail Image.png
Description
Proteins function as molecular machines which perform a diverse set of essential jobs. To use these proteins as tools and manipulate them with directed engineering, a deeper understanding of their function and regulation is needed. In the studies presented here, the chemical mechanism of a fluorescent protein and the assembly

Proteins function as molecular machines which perform a diverse set of essential jobs. To use these proteins as tools and manipulate them with directed engineering, a deeper understanding of their function and regulation is needed. In the studies presented here, the chemical mechanism of a fluorescent protein and the assembly behavior of a chemo-mechanical protein were explored to better understand their operation. In the first study a photoconvertible fluorescent protein (pcFP) was examined which undergoes a photochemical transformation upon irradiation with blue light resulting in an emission wavelength change from green to red. Photo-transformable proteins have been used in high resolution, subcellular biological imaging techniques, and desires to engineer them have prompted investigations into the mechanism of catalysis in pcFPs. Here, a Kinetic Isotope Effect was measured to determine the rate-limiting step of green-to-red photoconversion in the reconstructed Least Evolved Ancestor (LEA) protein. The results provide insight on the process of photoconversion and evidence for the formation of a long-lived intermediate. The second study presented here focuses on the AAA+ protein Rubisco activase (Rca), which plays a critical role in the removal of inhibitors from the carbon-dioxide fixing enzyme Rubisco. Efforts to engineer Rubisco and Rca can be guided by a deeper understanding of their structure and interactions. The structure of higher plant Rca from spinach, and its interactions with its cognate Rubisco, were investigated through negative-stain electron microscopy (EM) and cryo-EM experiments. Multiple types of higher-order oligomers of plant Rca were imaged which have never been structurally characterized, and the AAA+ core of plant Rca was shown to bind Rubisco side-on, similar to bacterial Rca’s. Higher resolution structures of these aggregates and complexes are needed to make definitive observations on protein-protein interactions. However, the results presented here provide evidence for the formation of regulatory structures and an experimental foundation for future exploration of plant Rca through cryo-EM.
ContributorsBreen, Isabella (Author) / Wachter, Rebekka (Thesis advisor) / Chiu, Po-Lin (Thesis advisor) / Levitus, Marcia (Committee member) / Mills, Jeremy (Committee member) / Arizona State University (Publisher)
Created2020