Matching Items (21)
Filtering by

Clear all filters

156938-Thumbnail Image.png
Description
Coordination and control of Intelligent Agents as a team is considered in this thesis.

Intelligent agents learn from experiences, and in times of uncertainty use the knowl-

edge acquired to make decisions and accomplish their individual or team objectives.

Agent objectives are defined using cost functions designed uniquely for the collective

task being performed.

Coordination and control of Intelligent Agents as a team is considered in this thesis.

Intelligent agents learn from experiences, and in times of uncertainty use the knowl-

edge acquired to make decisions and accomplish their individual or team objectives.

Agent objectives are defined using cost functions designed uniquely for the collective

task being performed. Individual agent costs are coupled in such a way that group ob-

jective is attained while minimizing individual costs. Information Asymmetry refers

to situations where interacting agents have no knowledge or partial knowledge of cost

functions of other agents. By virtue of their intelligence, i.e., by learning from past

experiences agents learn cost functions of other agents, predict their responses and

act adaptively to accomplish the team’s goal.

Algorithms that agents use for learning others’ cost functions are called Learn-

ing Algorithms, and algorithms agents use for computing actuation (control) which

drives them towards their goal and minimize their cost functions are called Control

Algorithms. Typically knowledge acquired using learning algorithms is used in con-

trol algorithms for computing control signals. Learning and control algorithms are

designed in such a way that the multi-agent system as a whole remains stable during

learning and later at an equilibrium. An equilibrium is defined as the event/point

where cost functions of all agents are optimized simultaneously. Cost functions are

designed so that the equilibrium coincides with the goal state multi-agent system as

a whole is trying to reach.

In collective load transport, two or more agents (robots) carry a load from point

A to point B in space. Robots could have different control preferences, for example,

different actuation abilities, however, are still required to coordinate and perform

load transport. Control preferences for each robot are characterized using a scalar

parameter θ i unique to the robot being considered and unknown to other robots.

With the aid of state and control input observations, agents learn control preferences

of other agents, optimize individual costs and drive the multi-agent system to a goal

state.

Two learning and Control algorithms are presented. In the first algorithm(LCA-

1), an existing work, each agent optimizes a cost function similar to 1-step receding

horizon optimal control problem for control. LCA-1 uses recursive least squares as

the learning algorithm and guarantees complete learning in two time steps. LCA-1 is

experimentally verified as part of this thesis.

A novel learning and control algorithm (LCA-2) is proposed and verified in sim-

ulations and on hardware. In LCA-2, each agent solves an infinite horizon linear

quadratic regulator (LQR) problem for computing control. LCA-2 uses a learning al-

gorithm similar to line search methods, and guarantees learning convergence to true

values asymptotically.

Simulations and hardware implementation show that the LCA-2 is stable for a

variety of systems. Load transport is demonstrated using both the algorithms. Ex-

periments running algorithm LCA-2 are able to resist disturbances and balance the

assumed load better compared to LCA-1.
ContributorsKAMBAM, KARTHIK (Author) / Zhang, Wenlong (Thesis advisor) / Nedich, Angelia (Thesis advisor) / Ren, Yi (Committee member) / Arizona State University (Publisher)
Created2018
154802-Thumbnail Image.png
Description
Increasing demand for reducing the stress on fossil fuels has motivated automotive industries to shift towards sustainable modes of transport through electric and hybrid electric vehicles. Most fuel efficient cars of year 2016 are hybrid vehicles as reported by environmental protection agency. Hybrid vehicles operate with internal combustion engine and

Increasing demand for reducing the stress on fossil fuels has motivated automotive industries to shift towards sustainable modes of transport through electric and hybrid electric vehicles. Most fuel efficient cars of year 2016 are hybrid vehicles as reported by environmental protection agency. Hybrid vehicles operate with internal combustion engine and electric motors powered by batteries, and can significantly improve fuel economy due to downsizing of the engine. Whereas, Plug-in hybrids (PHEVs) have an additional feature compared to hybrid vehicles i.e. recharging batteries through external power outlets. Among hybrid powertrains, lithium-ion batteries have emerged as a major electrochemical storage source for propulsion of vehicles.

In PHEVs, batteries operate under charge sustaining and charge depleting mode based on torque requirement and state of charge. In the current article, 26650 lithium-ion cells were cycled extensively at 25 and 50 oC under charge sustaining mode to monitor capacity and cell impedance values followed by analyzing the Lithium iron phosphate (LiFePO4) cathode material by X-ray diffraction analysis (XRD). High frequency resistance measured by electrochemical impedance spectroscopy was found to increase significantly under high temperature cycling, leading to power fading. No phase change in LiFePO4 cathode material is observed after 330 cycles at elevated temperature under charge sustaining mode from the XRD analysis. However, there was significant change in crystallite size of the cathode active material after charge/discharge cycling with charge sustaining mode. Additionally, 18650 lithium-ion cells were tested under charge depleting mode to monitor capacity values.
ContributorsBadami, Pavan Pramod (Author) / Kannan, Arunachala Mada (Thesis advisor) / Huang, Huei Ping (Thesis advisor) / Ren, Yi (Committee member) / Arizona State University (Publisher)
Created2016
154942-Thumbnail Image.png
Description
Tolerance specification for manufacturing components from 3D models is a tedious task and often requires expertise of “detailers”. The work presented here is a part of a larger ongoing project aimed at automating tolerance specification to aid less experienced designers by producing consistent geometric dimensioning and tolerancing (GD&T). Tolerance specification

Tolerance specification for manufacturing components from 3D models is a tedious task and often requires expertise of “detailers”. The work presented here is a part of a larger ongoing project aimed at automating tolerance specification to aid less experienced designers by producing consistent geometric dimensioning and tolerancing (GD&T). Tolerance specification can be separated into two major tasks; tolerance schema generation and tolerance value specification. This thesis will focus on the latter part of automated tolerance specification, namely tolerance value allocation and analysis. The tolerance schema (sans values) required prior to these tasks have already been generated by the auto-tolerancing software. This information is communicated through a constraint tolerance feature graph file developed previously at Design Automation Lab (DAL) and is consistent with ASME Y14.5 standard.

The objective of this research is to allocate tolerance values to ensure that the assemblability conditions are satisfied. Assemblability refers to “the ability to assemble/fit a set of parts in specified configuration given a nominal geometry and its corresponding tolerances”. Assemblability is determined by the clearances between the mating features. These clearances are affected by accumulation of tolerances in tolerance loops and hence, the tolerance loops are extracted first. Once tolerance loops have been identified initial tolerance values are allocated to the contributors in these loops. It is highly unlikely that the initial allocation would satisfice assemblability requirements. Overlapping loops have to be simultaneously satisfied progressively. Hence, tolerances will need to be re-allocated iteratively. This is done with the help of tolerance analysis module.

The tolerance allocation and analysis module receives the constraint graph which contains all basic dimensions and mating constraints from the generated schema. The tolerance loops are detected by traversing the constraint graph. The initial allocation distributes the tolerance budget computed from clearance available in the loop, among its contributors in proportion to the associated nominal dimensions. The analysis module subjects the loops to 3D parametric variation analysis and estimates the variation parameters for the clearances. The re-allocation module uses hill climbing heuristics derived from the distribution parameters to select a loop. Re-allocation Of the tolerance values is done using sensitivities and the weights associated with the contributors in the stack.

Several test cases have been run with this software and the desired user input acceptance rates are achieved. Three test cases are presented and output of each module is discussed.
ContributorsBiswas, Deepanjan (Author) / Shah, Jami J. (Thesis advisor) / Davidson, Joseph (Committee member) / Ren, Yi (Committee member) / Arizona State University (Publisher)
Created2016
155081-Thumbnail Image.png
Description
ABSTRACT

A large fraction of the total energy consumption in the world comes from heating and cooling of buildings. Improving the energy efficiency of buildings to reduce the needs of seasonal heating and cooling is one of the major challenges in sustainable development. In general, the energy efficiency depends

ABSTRACT

A large fraction of the total energy consumption in the world comes from heating and cooling of buildings. Improving the energy efficiency of buildings to reduce the needs of seasonal heating and cooling is one of the major challenges in sustainable development. In general, the energy efficiency depends on the geometry and material of the buildings. To explore a framework for accurately assessing this dependence, detailed 3-D thermofluid simulations are performed by systematically sweeping the parameter space spanned by four parameters: the size of building, thickness and material of wall, and fractional size of window. The simulations incorporate realistic boundary conditions of diurnally-varying temperatures from observation, and the effect of fluid flow with explicit thermal convection inside the building. The outcome of the numerical simulations is synthesized into a simple map of an index of energy efficiency in the parameter space which can be used by stakeholders to quick look-up the energy efficiency of a proposed design of a building before its construction. Although this study only considers a special prototype of buildings, the framework developed in this work can potentially be used for a wide range of buildings and applications.
ContributorsJain, Gaurav (Author) / Huang, Huei-Ping (Thesis advisor) / Ren, Yi (Committee member) / Oswald, Jay (Committee member) / Arizona State University (Publisher)
Created2016
154994-Thumbnail Image.png
Description
When manufacturing large or complex parts, often a rough operation such as casting is used to create the majority of the part geometry. Due to the highly variable nature of the casting process, for mechanical components that require precision surfaces for functionality or assembly with others, some of the important

When manufacturing large or complex parts, often a rough operation such as casting is used to create the majority of the part geometry. Due to the highly variable nature of the casting process, for mechanical components that require precision surfaces for functionality or assembly with others, some of the important features are machined to specification. Depending on the relative locations of as-cast to-be-machined features and the amount of material at each, the part may be positioned or ‘set up’ on a fixture in a configuration that will ensure that the pre-specified machining operations will successfully clean up the rough surfaces and produce a part that conforms to any assigned tolerances. For a particular part whose features incur excessive deviation in the casting process, it may be that no setup would yield an acceptable final part. The proposed Setup-Map (S-Map) describes the positions and orientations of a part that will allow for it to be successfully machined, and will be able to determine if a particular part cannot be made to specification.

The Setup Map is a point space in six dimensions where each of the six orthogonal coordinates corresponds to one of the rigid-body displacements in three dimensional space: three rotations and three translations. Any point within the boundaries of the Setup-Map (S-Map) corresponds to a small displacement of the part that satisfies the condition that each feature will lie within its associated tolerance zone after machining. The process for creating the S-Map involves the representation of constraints imposed by the tolerances in simple coordinate systems for each to-be-machined feature. Constraints are then transformed to a single coordinate system where the intersection reveals the common allowable ‘setup’ points. Should an intersection of the six-dimensional constraints exist, an optimization scheme is used to choose a single setup that gives the best chance for machining to be completed successfully. Should no intersection exist, the particular part cannot be machined to specification or must be re-worked with weld metal added to specific locations.
ContributorsKalish, Nathan (Author) / Davidson, Joseph K. (Thesis advisor) / Shah, Jami J. (Thesis advisor) / Ren, Yi (Committee member) / Arizona State University (Publisher)
Created2016
155687-Thumbnail Image.png
Description
Semiconductor manufacturing is one of the most complex manufacturing systems in today’s times. Since semiconductor industry is extremely consumer driven, market demands within this industry change rapidly. It is therefore very crucial for these industries to be able to predict cycle time very accurately in order to quote accurate delivery

Semiconductor manufacturing is one of the most complex manufacturing systems in today’s times. Since semiconductor industry is extremely consumer driven, market demands within this industry change rapidly. It is therefore very crucial for these industries to be able to predict cycle time very accurately in order to quote accurate delivery dates. Discrete Event Simulation (DES) models are often used to model these complex manufacturing systems in order to generate estimates of the cycle time distribution. However, building models and executing them consumes sufficient time and resources. The objective of this research is to determine the influence of input parameters on the cycle time distribution of a semiconductor or high volume electronics manufacturing system. This will help the decision makers to implement system changes to improve the predictability of their cycle time distribution without having to run simulation models. In order to understand how input parameters impact the cycle time, Design of Experiments (DOE) is performed. The response variables considered are the attributes of cycle time distribution which include the four moments and percentiles. The input to this DOE is the output from the simulation runs. Main effects, two-way and three-way interactions for these input variables are analyzed. The implications of these results to real world scenarios are explained which would help manufactures understand the effects of the interactions between the input factors on the estimates of cycle time distribution. The shape of the cycle time distributions is different for different types of systems. Also, DES requires substantial resources and time to run. In an effort to generalize the results obtained in semiconductor manufacturing analysis, a non- complex system is considered.
ContributorsSalvi, Tanushree Ashutosh (Author) / Bekki, Jennifer M (Thesis advisor) / Sodemann, Angela (Thesis advisor) / Shuaib, Abdelrahman (Committee member) / Ren, Yi (Committee member) / Arizona State University (Publisher)
Created2017
155672-Thumbnail Image.png
Description
The greenhouse gases in the atmosphere have reached a highest level due to high number of vehicles. A Fuel Cell Hybrid Electric Vehicle (FCHEV) has zero greenhouse gas emissions compared to conventional ICE vehicles or Hybrid Electric Vehicles and hence is a better alternative. All Electric Vehicle (AEVs) have longer

The greenhouse gases in the atmosphere have reached a highest level due to high number of vehicles. A Fuel Cell Hybrid Electric Vehicle (FCHEV) has zero greenhouse gas emissions compared to conventional ICE vehicles or Hybrid Electric Vehicles and hence is a better alternative. All Electric Vehicle (AEVs) have longer charging time which is unfavorable. A fully charged battery gives less range compared to a FCHEV with a full hydrogen tank. So FCHEV has an advantage of a quick fuel up and more mileage than AEVs. A Proton Electron Membrane Fuel Cell (PEMFC) is the commonly used kind of fuel cell vehicles but it possesses slow current dynamics and hence not suitable to be the sole power source in a vehicle. Therefore, improving the transient power capabilities of fuel cell to satisfy the road load demand is critical.

This research studies integration of Ultra-Capacitor (UC) to FCHEV. The objective is to analyze the effect of integrating UCs on the transient response of FCHEV powertrain. UCs has higher power density which can overcome slow dynamics of fuel cell. A power management strategy utilizing peak power shaving strategy is implemented. The goal is to decrease power load on batteries and operate fuel cell stack in it’s most efficient region. Complete model to simulate the physical behavior of UC-Integrated FCHEV (UC-FCHEV) is developed using Matlab/SIMULINK. The fuel cell polarization curve is utilized to devise operating points of the fuel cell to maintain its operation at most efficient region. Results show reduction of hydrogen consumption in aggressive US06 drive cycle from 0.29 kg per drive cycle to 0.12 kg. The maximum charge/discharge battery current was reduced from 286 amperes to 110 amperes in US06 drive cycle. Results for the FUDS drive cycle show a reduction in fuel consumption from 0.18 kg to 0.05 kg in one drive cycle. This reduction in current increases the life of the battery since its protected from overcurrent. The SOC profile of the battery also shows that the battery is not discharged to its minimum threshold which increasing the health of the battery based on number of charge/discharge cycles.
ContributorsJethani, Puneet V. (Author) / Mayyas, Abdel (Thesis advisor) / Berman, Spring (Committee member) / Ren, Yi (Committee member) / Arizona State University (Publisher)
Created2017
155159-Thumbnail Image.png
Description
The environmental impact of the fossil fuels has increased tremendously in the last decade. This impact is one of the most contributing factors of global warming. This research aims to reduce the amount of fuel consumed by vehicles through optimizing the control scheme for the future route information. Taking advantage

The environmental impact of the fossil fuels has increased tremendously in the last decade. This impact is one of the most contributing factors of global warming. This research aims to reduce the amount of fuel consumed by vehicles through optimizing the control scheme for the future route information. Taking advantage of more degrees of freedom available within PHEV, HEV, and FCHEV “energy management” allows more margin to maximize efficiency in the propulsion systems. The application focuses on reducing the energy consumption in vehicles by acquiring information about the road grade. Road elevations are obtained by use of Geographic Information System (GIS) maps to optimize the controller. The optimization is then reflected on the powertrain of the vehicle.The approach uses a Model Predictive Control (MPC) algorithm that allows the energy management strategy to leverage road grade to prepare the vehicle for minimizing energy consumption during an uphill and potential energy harvesting during a downhill. The control algorithm will predict future energy/power requirements of the vehicle and optimize the performance by instructing the power split between the internal combustion engine (ICE) and the electric-drive system. Allowing for more efficient operation and higher performance of the PHEV, and HEV. Implementation of different strategies, such as MPC and Dynamic Programming (DP), is considered for optimizing energy management systems. These strategies are utilized to have a low processing time. This approach allows the optimization to be integrated with ADAS applications, using current technology for implementable real time applications.

The Thesis presents multiple control strategies designed, implemented, and tested using real-world road elevation data from three different routes. Initial simulation based results show significant energy savings. The savings range between 11.84% and 25.5% for both Rule Based (RB) and DP strategies on the real world tested routes. Future work will take advantage of vehicle connectivity and ADAS systems to utilize Vehicle to Vehicle (V2V), Vehicle to Infrastructure (V2I), traffic information, and sensor fusion to further optimize the PHEV and HEV toward more energy efficient operation.
ContributorsAlzorgan, Mohammad (Author) / Mayyas, Abdel Ra’ouf (Thesis advisor) / Berman, Spring (Committee member) / Ren, Yi (Committee member) / Arizona State University (Publisher)
Created2016
168441-Thumbnail Image.png
Description
Generative models in various domain such as images, speeches, and videos are beingdeveloped actively over the last decades and recent deep generative models are now capable of synthesizing multimedia contents are difficult to be distinguishable from authentic contents. Such capabilities cause concerns such as malicious impersonation, Intellectual property theft(IP theft) and copyright infringement. One

Generative models in various domain such as images, speeches, and videos are beingdeveloped actively over the last decades and recent deep generative models are now capable of synthesizing multimedia contents are difficult to be distinguishable from authentic contents. Such capabilities cause concerns such as malicious impersonation, Intellectual property theft(IP theft) and copyright infringement. One method to solve these threats is to embedded attributable watermarking in synthesized contents so that user can identify the user-end models where the contents are generated from. This paper investigates a solution for model attribution, i.e., the classification of synthetic contents by their source models via watermarks embedded in the contents. Existing studies showed the feasibility of model attribution in the image domain and tradeoff between attribution accuracy and generation quality under the various adversarial attacks but not in speech domain. This work discuss the feasibility of model attribution in different domain and algorithmic improvements for generating user-end speech models that empirically achieve high accuracy of attribution while maintaining high generation quality. Lastly, several experiments are conducted show the tradeoff between attributability and generation quality under a variety of attacks on generated speech signals attempting to remove the watermarks.
ContributorsCho, Yongbaek (Author) / Yang, Yezhou (Thesis advisor) / Ren, Yi (Committee member) / Trieu, Ni (Committee member) / Arizona State University (Publisher)
Created2021
187873-Thumbnail Image.png
Description
Least squares fitting in 3D is applied to produce higher level geometric parameters that describe the optimum location of a line-profile through many nodal points that are derived from Finite Element Analysis (FEA) simulations of elastic spring-back of features both on stamped sheet metal components after they have been plasticly

Least squares fitting in 3D is applied to produce higher level geometric parameters that describe the optimum location of a line-profile through many nodal points that are derived from Finite Element Analysis (FEA) simulations of elastic spring-back of features both on stamped sheet metal components after they have been plasticly deformed in a press and released, and on simple assemblies made from them. Although the traditional Moore-Penrose inverse was used to solve the superabundant linear equations, the formulation of these equations was distinct and based on virtual work and statics applied to parallel-actuated robots in order to allow for both more complex profiles and a change in profile size. The output, a small displacement torsor (SDT) is used to describe the displacement of the profile from its nominal location. It may be regarded as a generalization of the slope and intercept parameters of a line which result from a Gauss-Markov regression fit of points in a plane. Additionally, minimum zone-magnitudes were computed that just capture the points along the profile. And finally, algorithms were created to compute simple parameters for cross-sectional shapes of components were also computed from sprung-back data points according to the protocol of simulations and benchmark experiments conducted by the metal forming community 30 years ago, although it was necessary to modify their protocol for some geometries that differed from the benchmark.
ContributorsSunkara, Sai Chandu (Author) / Davidson, Joseph (Thesis advisor) / Shah, Jami (Committee member) / Ren, Yi (Committee member) / Arizona State University (Publisher)
Created2023