Matching Items (138)
Filtering by

Clear all filters

150019-Thumbnail Image.png
Description
Currently Java is making its way into the embedded systems and mobile devices like androids. The programs written in Java are compiled into machine independent binary class byte codes. A Java Virtual Machine (JVM) executes these classes. The Java platform additionally specifies the Java Native Interface (JNI). JNI allows Java

Currently Java is making its way into the embedded systems and mobile devices like androids. The programs written in Java are compiled into machine independent binary class byte codes. A Java Virtual Machine (JVM) executes these classes. The Java platform additionally specifies the Java Native Interface (JNI). JNI allows Java code that runs within a JVM to interoperate with applications or libraries that are written in other languages and compiled to the host CPU ISA. JNI plays an important role in embedded system as it provides a mechanism to interact with libraries specific to the platform. This thesis addresses the overhead incurred in the JNI due to reflection and serialization when objects are accessed on android based mobile devices. It provides techniques to reduce this overhead. It also provides an API to access objects through its reference through pinning its memory location. The Android emulator was used to evaluate the performance of these techniques and we observed that there was 5 - 10 % performance gain in the new Java Native Interface.
ContributorsChandrian, Preetham (Author) / Lee, Yann-Hang (Thesis advisor) / Davulcu, Hasan (Committee member) / Li, Baoxin (Committee member) / Arizona State University (Publisher)
Created2011
149992-Thumbnail Image.png
Description
Process variations have become increasingly important for scaled technologies starting at 45nm. The increased variations are primarily due to random dopant fluctuations, line-edge roughness and oxide thickness fluctuation. These variations greatly impact all aspects of circuit performance and pose a grand challenge to future robust IC design. To improve robustness,

Process variations have become increasingly important for scaled technologies starting at 45nm. The increased variations are primarily due to random dopant fluctuations, line-edge roughness and oxide thickness fluctuation. These variations greatly impact all aspects of circuit performance and pose a grand challenge to future robust IC design. To improve robustness, efficient methodology is required that considers effect of variations in the design flow. Analyzing timing variability of complex circuits with HSPICE simulations is very time consuming. This thesis proposes an analytical model to predict variability in CMOS circuits that is quick and accurate. There are several analytical models to estimate nominal delay performance but very little work has been done to accurately model delay variability. The proposed model is comprehensive and estimates nominal delay and variability as a function of transistor width, load capacitance and transition time. First, models are developed for library gates and the accuracy of the models is verified with HSPICE simulations for 45nm and 32nm technology nodes. The difference between predicted and simulated σ/μ for the library gates is less than 1%. Next, the accuracy of the model for nominal delay is verified for larger circuits including ISCAS'85 benchmark circuits. The model predicted results are within 4% error of HSPICE simulated results and take a small fraction of the time, for 45nm technology. Delay variability is analyzed for various paths and it is observed that non-critical paths can become critical because of Vth variation. Variability on shortest paths show that rate of hold violations increase enormously with increasing Vth variation.
ContributorsGummalla, Samatha (Author) / Chakrabarti, Chaitali (Thesis advisor) / Cao, Yu (Thesis advisor) / Bakkaloglu, Bertan (Committee member) / Arizona State University (Publisher)
Created2011
149991-Thumbnail Image.png
Description
With the introduction of compressed sensing and sparse representation,many image processing and computer vision problems have been looked at in a new way. Recent trends indicate that many challenging computer vision and image processing problems are being solved using compressive sensing and sparse representation algorithms. This thesis assays some applications

With the introduction of compressed sensing and sparse representation,many image processing and computer vision problems have been looked at in a new way. Recent trends indicate that many challenging computer vision and image processing problems are being solved using compressive sensing and sparse representation algorithms. This thesis assays some applications of compressive sensing and sparse representation with regards to image enhancement, restoration and classication. The first application deals with image Super-Resolution through compressive sensing based sparse representation. A novel framework is developed for understanding and analyzing some of the implications of compressive sensing in reconstruction and recovery of an image through raw-sampled and trained dictionaries. Properties of the projection operator and the dictionary are examined and the corresponding results presented. In the second application a novel technique for representing image classes uniquely in a high-dimensional space for image classification is presented. In this method, design and implementation strategy of the image classification system through unique affine sparse codes is presented, which leads to state of the art results. This further leads to analysis of some of the properties attributed to these unique sparse codes. In addition to obtaining these codes, a strong classier is designed and implemented to boost the results obtained. Evaluation with publicly available datasets shows that the proposed method outperforms other state of the art results in image classication. The final part of the thesis deals with image denoising with a novel approach towards obtaining high quality denoised image patches using only a single image. A new technique is proposed to obtain highly correlated image patches through sparse representation, which are then subjected to matrix completion to obtain high quality image patches. Experiments suggest that there may exist a structure within a noisy image which can be exploited for denoising through a low-rank constraint.
ContributorsKulkarni, Naveen (Author) / Li, Baoxin (Thesis advisor) / Ye, Jieping (Committee member) / Sen, Arunabha (Committee member) / Arizona State University (Publisher)
Created2011
150348-Thumbnail Image.png
Description
Demands in file size and transfer rates for consumer-orientated products have escalated in recent times. This is primarily due to the emergence of high definition video content. Now factor in the consumer desire for convenience, and we find that wireless service is the most desired approach for inter-connectivity. Consumers expect

Demands in file size and transfer rates for consumer-orientated products have escalated in recent times. This is primarily due to the emergence of high definition video content. Now factor in the consumer desire for convenience, and we find that wireless service is the most desired approach for inter-connectivity. Consumers expect wireless service to emulate wired service with little to virtually no difference in quality of service (QoS). The background section of this document examines the QoS requirements for wireless connectivity of high definition video applications. I then proceed to look at proposed solutions at the physical (PHY) and the media access control (MAC) layers as well as cross-layer schemes. These schemes are subsequently are evaluated in terms of usefulness in a multi-gigabit, 60 GHz wireless multimedia system targeting the average consumer. It is determined that a substantial gap in published literature exists pertinent to this application. Specifically, little or no work has been found that shows how an adaptive PHYMAC cross-layer solution that provides real-time compensation for varying channel conditions might be actually implemented. Further, no work has been found that shows results of such a model. This research proposes, develops and implements in Matlab code an alternate cross-layer solution that will provide acceptable QoS service for multimedia applications. Simulations using actual high definition video sequences are used to test the proposed solution. Results based on the average PSNR metric show that a quasi-adaptive algorithm provides greater than 7 dB of improvement over a non-adaptive approach while a fully-adaptive alogrithm provides over18 dB of improvement. The fully adaptive implementation has been conclusively shown to be superior to non-adaptive techniques and sufficiently superior to even quasi-adaptive algorithms.
ContributorsBosco, Bruce (Author) / Reisslein, Martin (Thesis advisor) / Tepedelenlioğlu, Cihan (Committee member) / Sen, Arunabha (Committee member) / Arizona State University (Publisher)
Created2011
Description
In many classication problems data samples cannot be collected easily, example in drug trials, biological experiments and study on cancer patients. In many situations the data set size is small and there are many outliers. When classifying such data, example cancer vs normal patients the consequences of mis-classication are probably

In many classication problems data samples cannot be collected easily, example in drug trials, biological experiments and study on cancer patients. In many situations the data set size is small and there are many outliers. When classifying such data, example cancer vs normal patients the consequences of mis-classication are probably more important than any other data type, because the data point could be a cancer patient or the classication decision could help determine what gene might be over expressed and perhaps a cause of cancer. These mis-classications are typically higher in the presence of outlier data points. The aim of this thesis is to develop a maximum margin classier that is suited to address the lack of robustness of discriminant based classiers (like the Support Vector Machine (SVM)) to noise and outliers. The underlying notion is to adopt and develop a natural loss function that is more robust to outliers and more representative of the true loss function of the data. It is demonstrated experimentally that SVM's are indeed susceptible to outliers and that the new classier developed, here coined as Robust-SVM (RSVM), is superior to all studied classier on the synthetic datasets. It is superior to the SVM in both the synthetic and experimental data from biomedical studies and is competent to a classier derived on similar lines when real life data examples are considered.
ContributorsGupta, Sidharth (Author) / Kim, Seungchan (Thesis advisor) / Welfert, Bruno (Committee member) / Li, Baoxin (Committee member) / Arizona State University (Publisher)
Created2011
149901-Thumbnail Image.png
Description
Query Expansion is a functionality of search engines that suggest a set of related queries for a user issued keyword query. In case of exploratory or ambiguous keyword queries, the main goal of the user would be to identify and select a specific category of query results among different categorical

Query Expansion is a functionality of search engines that suggest a set of related queries for a user issued keyword query. In case of exploratory or ambiguous keyword queries, the main goal of the user would be to identify and select a specific category of query results among different categorical options, in order to narrow down the search and reach the desired result. Typical corpus-driven keyword query expansion approaches return popular words in the results as expanded queries. These empirical methods fail to cover all semantics of categories present in the query results. More importantly these methods do not consider the semantic relationship between the keywords featured in an expanded query. Contrary to a normal keyword search setting, these factors are non-trivial in an exploratory and ambiguous query setting where the user's precise discernment of different categories present in the query results is more important for making subsequent search decisions. In this thesis, I propose a new framework for keyword query expansion: generating a set of queries that correspond to the categorization of original query results, which is referred as Categorizing query expansion. Two approaches of algorithms are proposed, one that performs clustering as pre-processing step and then generates categorizing expanded queries based on the clusters. The other category of algorithms handle the case of generating quality expanded queries in the presence of imperfect clusters.
ContributorsNatarajan, Sivaramakrishnan (Author) / Chen, Yi (Thesis advisor) / Candan, Selcuk (Committee member) / Sen, Arunabha (Committee member) / Arizona State University (Publisher)
Created2011
150167-Thumbnail Image.png
Description
Redundant Binary (RBR) number representations have been extensively used in the past for high-throughput Digital Signal Processing (DSP) systems. Data-path components based on this number system have smaller critical path delay but larger area compared to conventional two's complement systems. This work explores the use of RBR number representation for

Redundant Binary (RBR) number representations have been extensively used in the past for high-throughput Digital Signal Processing (DSP) systems. Data-path components based on this number system have smaller critical path delay but larger area compared to conventional two's complement systems. This work explores the use of RBR number representation for implementing high-throughput DSP systems that are also energy-efficient. Data-path components such as adders and multipliers are evaluated with respect to critical path delay, energy and Energy-Delay Product (EDP). A new design for a RBR adder with very good EDP performance has been proposed. The corresponding RBR parallel adder has a much lower critical path delay and EDP compared to two's complement carry select and carry look-ahead adder implementations. Next, several RBR multiplier architectures are investigated and their performance compared to two's complement systems. These include two new multiplier architectures: a purely RBR multiplier where both the operands are in RBR form, and a hybrid multiplier where the multiplicand is in RBR form and the other operand is represented in conventional two's complement form. Both the RBR and hybrid designs are demonstrated to have better EDP performance compared to conventional two's complement multipliers. The hybrid multiplier is also shown to have a superior EDP performance compared to the RBR multiplier, with much lower implementation area. Analysis on the effect of bit-precision is also performed, and it is shown that the performance gain of RBR systems improves for higher bit precision. Next, in order to demonstrate the efficacy of the RBR representation at the system-level, the performance of RBR and hybrid implementations of some common DSP kernels such as Discrete Cosine Transform, edge detection using Sobel operator, complex multiplication, Lifting-based Discrete Wavelet Transform (9, 7) filter, and FIR filter, is compared with two's complement systems. It is shown that for relatively large computation modules, the RBR to two's complement conversion overhead gets amortized. In case of systems with high complexity, for iso-throughput, both the hybrid and RBR implementations are demonstrated to be superior with lower average energy consumption. For low complexity systems, the conversion overhead is significant, and overpowers the EDP performance gain obtained from the RBR computation operation.
ContributorsMahadevan, Rupa (Author) / Chakrabarti, Chaitali (Thesis advisor) / Kiaei, Sayfe (Committee member) / Cao, Yu (Committee member) / Arizona State University (Publisher)
Created2011
150181-Thumbnail Image.png
Description
Real-world environments are characterized by non-stationary and continuously evolving data. Learning a classification model on this data would require a framework that is able to adapt itself to newer circumstances. Under such circumstances, transfer learning has come to be a dependable methodology for improving classification performance with reduced training costs

Real-world environments are characterized by non-stationary and continuously evolving data. Learning a classification model on this data would require a framework that is able to adapt itself to newer circumstances. Under such circumstances, transfer learning has come to be a dependable methodology for improving classification performance with reduced training costs and without the need for explicit relearning from scratch. In this thesis, a novel instance transfer technique that adapts a "Cost-sensitive" variation of AdaBoost is presented. The method capitalizes on the theoretical and functional properties of AdaBoost to selectively reuse outdated training instances obtained from a "source" domain to effectively classify unseen instances occurring in a different, but related "target" domain. The algorithm is evaluated on real-world classification problems namely accelerometer based 3D gesture recognition, smart home activity recognition and text categorization. The performance on these datasets is analyzed and evaluated against popular boosting-based instance transfer techniques. In addition, supporting empirical studies, that investigate some of the less explored bottlenecks of boosting based instance transfer methods, are presented, to understand the suitability and effectiveness of this form of knowledge transfer.
ContributorsVenkatesan, Ashok (Author) / Panchanathan, Sethuraman (Thesis advisor) / Li, Baoxin (Committee member) / Ye, Jieping (Committee member) / Arizona State University (Publisher)
Created2011
150190-Thumbnail Image.png
Description
Sparse learning is a technique in machine learning for feature selection and dimensionality reduction, to find a sparse set of the most relevant features. In any machine learning problem, there is a considerable amount of irrelevant information, and separating relevant information from the irrelevant information has been a topic of

Sparse learning is a technique in machine learning for feature selection and dimensionality reduction, to find a sparse set of the most relevant features. In any machine learning problem, there is a considerable amount of irrelevant information, and separating relevant information from the irrelevant information has been a topic of focus. In supervised learning like regression, the data consists of many features and only a subset of the features may be responsible for the result. Also, the features might require special structural requirements, which introduces additional complexity for feature selection. The sparse learning package, provides a set of algorithms for learning a sparse set of the most relevant features for both regression and classification problems. Structural dependencies among features which introduce additional requirements are also provided as part of the package. The features may be grouped together, and there may exist hierarchies and over- lapping groups among these, and there may be requirements for selecting the most relevant groups among them. In spite of getting sparse solutions, the solutions are not guaranteed to be robust. For the selection to be robust, there are certain techniques which provide theoretical justification of why certain features are selected. The stability selection, is a method for feature selection which allows the use of existing sparse learning methods to select the stable set of features for a given training sample. This is done by assigning probabilities for the features: by sub-sampling the training data and using a specific sparse learning technique to learn the relevant features, and repeating this a large number of times, and counting the probability as the number of times a feature is selected. Cross-validation which is used to determine the best parameter value over a range of values, further allows to select the best parameter value. This is done by selecting the parameter value which gives the maximum accuracy score. With such a combination of algorithms, with good convergence guarantees, stable feature selection properties and the inclusion of various structural dependencies among features, the sparse learning package will be a powerful tool for machine learning research. Modular structure, C implementation, ATLAS integration for fast linear algebraic subroutines, make it one of the best tool for a large sparse setting. The varied collection of algorithms, support for group sparsity, batch algorithms, are a few of the notable functionality of the SLEP package, and these features can be used in a variety of fields to infer relevant elements. The Alzheimer Disease(AD) is a neurodegenerative disease, which gradually leads to dementia. The SLEP package is used for feature selection for getting the most relevant biomarkers from the available AD dataset, and the results show that, indeed, only a subset of the features are required to gain valuable insights.
ContributorsThulasiram, Ramesh (Author) / Ye, Jieping (Thesis advisor) / Xue, Guoliang (Committee member) / Sen, Arunabha (Committee member) / Arizona State University (Publisher)
Created2011
150112-Thumbnail Image.png
Description
Typically, the complete loss or severe impairment of a sense such as vision and/or hearing is compensated through sensory substitution, i.e., the use of an alternative sense for receiving the same information. For individuals who are blind or visually impaired, the alternative senses have predominantly been hearing and touch. For

Typically, the complete loss or severe impairment of a sense such as vision and/or hearing is compensated through sensory substitution, i.e., the use of an alternative sense for receiving the same information. For individuals who are blind or visually impaired, the alternative senses have predominantly been hearing and touch. For movies, visual content has been made accessible to visually impaired viewers through audio descriptions -- an additional narration that describes scenes, the characters involved and other pertinent details. However, as audio descriptions should not overlap with dialogue, sound effects and musical scores, there is limited time to convey information, often resulting in stunted and abridged descriptions that leave out many important visual cues and concepts. This work proposes a promising multimodal approach to sensory substitution for movies by providing complementary information through haptics, pertaining to the positions and movements of actors, in addition to a film's audio description and audio content. In a ten-minute presentation of five movie clips to ten individuals who were visually impaired or blind, the novel methodology was found to provide an almost two time increase in the perception of actors' movements in scenes. Moreover, participants appreciated and found useful the overall concept of providing a visual perspective to film through haptics.
ContributorsViswanathan, Lakshmie Narayan (Author) / Panchanathan, Sethuraman (Thesis advisor) / Hedgpeth, Terri (Committee member) / Li, Baoxin (Committee member) / Arizona State University (Publisher)
Created2011