Matching Items (4)
Filtering by

Clear all filters

153173-Thumbnail Image.png
Description
Neuroimaging has appeared in the courtroom as a type of `evidence' to support claims about whether or not criminals should be held accountable for their crimes. Yet the ability to abstract notions of culpability and criminal behavior with confidence from these imagines is unclear. As there remains much to be

Neuroimaging has appeared in the courtroom as a type of `evidence' to support claims about whether or not criminals should be held accountable for their crimes. Yet the ability to abstract notions of culpability and criminal behavior with confidence from these imagines is unclear. As there remains much to be discovered in the relationship between personal responsibility, criminal behavior, and neurological abnormalities, questions have been raised toward neuroimaging as an appropriate means to validate these claims.

This project explores the limits and legitimacy of neuroimaging as a means of understanding behavior and culpability in determining appropriate criminal sentencing. It highlights key philosophical issues surrounding the ability to use neuroimaging to support this process, and proposes a method of ensuring their proper use. By engaging case studies and a thought experiment, this project illustrates the circumstances in which neuroimaging may assist in identifying particular characteristics relevant for criminal sentencing.

I argue that it is not a question of whether or not neuroimaging itself holds validity in determining a criminals guilt or motives, but rather a proper application of the issue is to focus on the way in which information regarding these images is communicated from the `expert' scientists to the `non-expert' making decisions about the sentence that are most important. Those who are considering this information's relevance, a judge or jury, are typically not well versed in criminal neuroscience and interpreting the significance of different images. I advocate the way in which this information is communicated from the scientist-informer to the decision-maker parallels in importance to its actual meaning.

As a solution, I engage Roger Pielke's model of honest brokering as a solution to ensure the appropriate use of neuroimaging in determining criminal responsibility and sentencing. A thought experiment follows to highlight the limits of science, engage philosophical repercussions, and illustrate honest brokering as a means of resolution. To achieve this, a hypothetical dialogue reminiscent of Kenneth Schaffner's `tools for talking' with behavioral geneticists and courtroom professionals will exemplify these ideas.
ContributorsTaddeo, Sarah (Author) / Robert, Jason S (Thesis advisor) / Marchant, Gary (Committee member) / Hurlbut, James B (Committee member) / Arizona State University (Publisher)
Created2014
156370-Thumbnail Image.png
Description
A novel clustered regularly interspaced short palindromic repeats/CRISPR-associated (CRISPR/Cas) tool for simultaneous gene editing and regulation was designed and tested. This study used the CRISPR-associated protein 9 (Cas9) endonuclease in complex with a 14-nucleotide (nt) guide RNA (gRNA) to repress a gene of interest using the Krüppel associated box (KRAB)

A novel clustered regularly interspaced short palindromic repeats/CRISPR-associated (CRISPR/Cas) tool for simultaneous gene editing and regulation was designed and tested. This study used the CRISPR-associated protein 9 (Cas9) endonuclease in complex with a 14-nucleotide (nt) guide RNA (gRNA) to repress a gene of interest using the Krüppel associated box (KRAB) domain, while also performing a separate gene modification using a 20-nt gRNA targeted to a reporter vector. DNA Ligase IV (LIGIV) was chosen as the target for gene repression, given its role in nonhomologous end joining, a common DNA repair process that competes with the more precise homology-directed repair (HDR).

To test for gene editing, a 20-nt gRNA was designed to target a disrupted enhanced green fluorescent protein (EGFP) gene present in a reporter vector. After the gRNA introduced a double-stranded break, cells attempted to repair the cut site via HDR using a DNA template within the reporter vector. In the event of successful gene editing, the EGFP sequence was restored to a functional state and green fluorescence was detectable by flow cytometry. To achieve gene repression, a 14-nt gRNA was designed to target LIGIV. The gRNA included a com protein recruitment domain, which recruited a Com-KRAB fusion protein to facilitate gene repression via chromatin modification of LIGIV. Quantitative polymerase chain reaction was used to quantify repression.

This study expanded upon earlier advancements, offering a novel and versatile approach to genetic modification and transcriptional regulation using CRISPR/Cas9. The overall results show that both gene editing and repression were occurring, thereby providing support for a novel CRISPR/Cas system capable of simultaneous gene modification and regulation. Such a system may enhance the genome engineering capabilities of researchers, benefit disease research, and improve the precision with which gene editing is performed.
ContributorsChapman, Jennifer E (Author) / Kiani, Samira (Thesis advisor) / Ugarova, Tatiana (Thesis advisor) / Marchant, Gary (Committee member) / Arizona State University (Publisher)
Created2018
158018-Thumbnail Image.png
Description
Many researchers have seen the value blockchain can add to the field of voting and many protocols have been proposed to allow voting to be conducted in a way that takes advantage of blockchains distributed and immutable structure. While blockchains immutable structure can take the place of paper records in

Many researchers have seen the value blockchain can add to the field of voting and many protocols have been proposed to allow voting to be conducted in a way that takes advantage of blockchains distributed and immutable structure. While blockchains immutable structure can take the place of paper records in preventing tampering it by itself is insufficient to construct a trustworthy voting system with eligibility, privacy, verifiability, and fairness requirements. Many of the protocols which strive to keep voters votes confidential, but also allow for verifiability and eligibility requirements rely on either a blind signature provided by a central authority to provide compliance with these requirements or ring signatures to prove membership in the set of voters. A blind signature issued by a central authority introduces a potential vulnerability as it allows a corrupt central authority to pass a large number of forged ballots into the mix without any detection. Ring signatures on the other hand tend to be overly resource intensive to allow for practical usage in large voting sets. The research in this thesis focuses on improving the trustworthiness of electronic voting systems by providing possible ways of avoiding or detecting corrupt central authorities while still relying upon the benefits of efficiency the blind signature provides.
ContributorsAnderson, Brandon David (Author) / Yau, Stephen S. (Thesis advisor) / Dasgupta, Partha (Committee member) / Marchant, Gary (Committee member) / Arizona State University (Publisher)
Created2020
168759-Thumbnail Image.png
Description
Adsorption of fibrinogen on various surfaces, including biomaterials, dramatically reduces the adhesion of platelets and leukocytes. The mechanism by which fibrinogen renders surfaces non-adhesive is its surface-induced self-assembly leading to the formation of a nanoscale multilayer matrix. Under the applied tensile force exerted by cellular integrins, the fibrinogen matrix extends

Adsorption of fibrinogen on various surfaces, including biomaterials, dramatically reduces the adhesion of platelets and leukocytes. The mechanism by which fibrinogen renders surfaces non-adhesive is its surface-induced self-assembly leading to the formation of a nanoscale multilayer matrix. Under the applied tensile force exerted by cellular integrins, the fibrinogen matrix extends as a result of the separation of layers which prevents the transduction of strong mechanical forces, resulting in weak intracellular signaling and feeble cell adhesion. Furthermore, upon detachment of adherent cells, a weak association between fibrinogen molecules in the superficial layers of the matrix allows integrins to pull fibrinogen molecules out of the matrix. Whether the latter mechanism contributes to the anti-adhesive mechanism under the flow is unclear. In the present study, using several experimental flow systems, it has been demonstrated that various blood cells as well as model HEK293 cells expressing the fibrinogen receptors, were able to remove fibrinogen molecules from the matrix in a time- and cell concentration-dependent manner. In contrast, insignificant fibrinogen dissociation occurred in a cell-free buffer, and crosslinking fibrinogen matrix significantly reduced cell-mediated dissociation of adsorbed fibrinogen. Surprisingly, cellular integrins contributed minimally to fibrinogen dissociation since function-blocking anti-integrin antibodies did not significantly inhibit this process. In addition, erythrocytes that are not known to express functional fibrinogen receptors and naked liposomes caused fibrinogen dissociation, suggesting that the removal of fibrinogen from the matrix may be caused by nonspecific low-affinity interactions of cells with the fibrinogen matrix. These results indicate that the peeling effect exerted by flowing cells upon their contact with the fibrinogen matrix is involved in the anti-adhesive mechanism.
ContributorsMursalimov, Aibek (Author) / Ugarova, Tatiana (Thesis advisor) / Chandler, Douglas (Committee member) / Podolnikova, Nataly (Committee member) / Ros, Robert (Committee member) / Arizona State University (Publisher)
Created2022