Matching Items (16)
Filtering by

Clear all filters

151204-Thumbnail Image.png
Description
There is a growing interest for improved high-accuracy camera calibration methods due to the increasing demand for 3D visual media in commercial markets. Camera calibration is used widely in the fields of computer vision, robotics and 3D reconstruction. Camera calibration is the first step for extracting 3D data from a

There is a growing interest for improved high-accuracy camera calibration methods due to the increasing demand for 3D visual media in commercial markets. Camera calibration is used widely in the fields of computer vision, robotics and 3D reconstruction. Camera calibration is the first step for extracting 3D data from a 2D image. It plays a crucial role in computer vision and 3D reconstruction due to the fact that the accuracy of the reconstruction and 3D coordinate determination relies on the accuracy of the camera calibration to a great extent. This thesis presents a novel camera calibration method using a circular calibration pattern. The disadvantages and issues with existing state-of-the-art methods are discussed and are overcome in this work. The implemented system consists of techniques of local adaptive segmentation, ellipse fitting, projection and optimization. Simulation results are presented to illustrate the performance of the proposed scheme. These results show that the proposed method reduces the error as compared to the state-of-the-art for high-resolution images, and that the proposed scheme is more robust to blur in the imaged calibration pattern.
ContributorsPrakash, Charan Dudda (Author) / Karam, Lina J (Thesis advisor) / Frakes, David (Committee member) / Papandreou-Suppappola, Antonia (Committee member) / Arizona State University (Publisher)
Created2012
156790-Thumbnail Image.png
Description
Vision processing on traditional architectures is inefficient due to energy-expensive off-chip data movements. Many researchers advocate pushing processing close to the sensor to substantially reduce data movements. However, continuous near-sensor processing raises the sensor temperature, impairing the fidelity of imaging/vision tasks.

The work characterizes the thermal implications of using 3D stacked

Vision processing on traditional architectures is inefficient due to energy-expensive off-chip data movements. Many researchers advocate pushing processing close to the sensor to substantially reduce data movements. However, continuous near-sensor processing raises the sensor temperature, impairing the fidelity of imaging/vision tasks.

The work characterizes the thermal implications of using 3D stacked image sensors with near-sensor vision processing units. The characterization reveals that near-sensor processing reduces system power but degrades image quality. For reasonable image fidelity, the sensor temperature needs to stay below a threshold, situationally determined by application needs. Fortunately, the characterization also identifies opportunities -- unique to the needs of near-sensor processing -- to regulate temperature based on dynamic visual task requirements and rapidly increase capture quality on demand.

Based on the characterization, the work proposes and investigate two thermal management strategies -- stop-capture-go and seasonal migration -- for imaging-aware thermal management. The work present parameters that govern the policy decisions and explore the trade-offs between system power and policy overhead. The work's evaluation shows that the novel dynamic thermal management strategies can unlock the energy-efficiency potential of near-sensor processing with minimal performance impact, without compromising image fidelity.
ContributorsKodukula, Venkatesh (Author) / LiKamWa, Robert (Thesis advisor) / Chakrabarti, Chaitali (Committee member) / Brunhaver, John (Committee member) / Arizona State University (Publisher)
Created2019
156962-Thumbnail Image.png
Description
With the end of Dennard scaling and Moore's law, architects have moved towards

heterogeneous designs consisting of specialized cores to achieve higher performance

and energy efficiency for a target application domain. Applications of linear algebra

are ubiquitous in the field of scientific computing, machine learning, statistics,

etc. with matrix computations being fundamental to these

With the end of Dennard scaling and Moore's law, architects have moved towards

heterogeneous designs consisting of specialized cores to achieve higher performance

and energy efficiency for a target application domain. Applications of linear algebra

are ubiquitous in the field of scientific computing, machine learning, statistics,

etc. with matrix computations being fundamental to these linear algebra based solutions.

Design of multiple dense (or sparse) matrix computation routines on the

same platform is quite challenging. Added to the complexity is the fact that dense

and sparse matrix computations have large differences in their storage and access

patterns and are difficult to optimize on the same architecture. This thesis addresses

this challenge and introduces a reconfigurable accelerator that supports both dense

and sparse matrix computations efficiently.

The reconfigurable architecture has been optimized to execute the following linear

algebra routines: GEMV (Dense General Matrix Vector Multiplication), GEMM

(Dense General Matrix Matrix Multiplication), TRSM (Triangular Matrix Solver),

LU Decomposition, Matrix Inverse, SpMV (Sparse Matrix Vector Multiplication),

SpMM (Sparse Matrix Matrix Multiplication). It is a multicore architecture where

each core consists of a 2D array of processing elements (PE).

The 2D array of PEs is of size 4x4 and is scheduled to perform 4x4 sized matrix

updates efficiently. A sequence of such updates is used to solve a larger problem inside

a core. A novel partitioned block compressed sparse data structure (PBCSC/PBCSR)

is used to perform sparse kernel updates. Scalable partitioning and mapping schemes

are presented that map input matrices of any given size to the multicore architecture.

Design trade-offs related to the PE array dimension, size of local memory inside a core

and the bandwidth between on-chip memories and the cores have been presented. An

optimal core configuration is developed from this analysis. Synthesis results using a 7nm PDK show that the proposed accelerator can achieve a performance of upto

32 GOPS using a single core.
ContributorsAnimesh, Saurabh (Author) / Chakrabarti, Chaitali (Thesis advisor) / Brunhaver, John (Committee member) / Ren, Fengbo (Committee member) / Arizona State University (Publisher)
Created2018
157065-Thumbnail Image.png
Description
The detection and segmentation of objects appearing in a natural scene, often referred to as Object Detection, has gained a lot of interest in the computer vision field. Although most existing object detectors aim to detect all the objects in a given scene, it is important to evaluate whether these

The detection and segmentation of objects appearing in a natural scene, often referred to as Object Detection, has gained a lot of interest in the computer vision field. Although most existing object detectors aim to detect all the objects in a given scene, it is important to evaluate whether these methods are capable of detecting the salient objects in the scene when constraining the number of proposals that can be generated due to constraints on timing or computations during execution. Salient objects are objects that tend to be more fixated by human subjects. The detection of salient objects is important in applications such as image collection browsing, image display on small devices, and perceptual compression.

This thesis proposes a novel evaluation framework that analyses the performance of popular existing object proposal generators in detecting the most salient objects. This work also shows that, by incorporating saliency constraints, the number of generated object proposals and thus the computational cost can be decreased significantly for a target true positive detection rate (TPR).

As part of the proposed framework, salient ground-truth masks are generated from the given original ground-truth masks for a given dataset. Given an object detection dataset, this work constructs salient object location ground-truth data, referred to here as salient ground-truth data for short, that only denotes the locations of salient objects. This is obtained by first computing a saliency map for the input image and then using it to assign a saliency score to each object in the image. Objects whose saliency scores are sufficiently high are referred to as salient objects. The detection rates are analyzed for existing object proposal generators with respect to the original ground-truth masks and the generated salient ground-truth masks.

As part of this work, a salient object detection database with salient ground-truth masks was constructed from the PASCAL VOC 2007 dataset. Not only does this dataset aid in analyzing the performance of existing object detectors for salient object detection, but it also helps in the development of new object detection methods and evaluating their performance in terms of successful detection of salient objects.
ContributorsKotamraju, Sai Prajwal (Author) / Karam, Lina J (Thesis advisor) / Yu, Hongbin (Committee member) / Jayasuriya, Suren (Committee member) / Arizona State University (Publisher)
Created2019
154425-Thumbnail Image.png
Description
Digital systems are essential to the technological advancements in space exploration. Microprocessor and flash memory are the essential parts of such a digital system. Space exploration requires a special class of radiation hardened microprocessors and flash memories, which are not functionally disrupted in the presence of radiation. The reference design

Digital systems are essential to the technological advancements in space exploration. Microprocessor and flash memory are the essential parts of such a digital system. Space exploration requires a special class of radiation hardened microprocessors and flash memories, which are not functionally disrupted in the presence of radiation. The reference design ‘HERMES’ is a radiation-hardened microprocessor with performance comparable to commercially available designs. The reference design ‘eFlash’ is a prototype of soft-error hardened flash memory for configuring Xilinx FPGAs. These designs are manufactured using a foundry bulk CMOS 90-nm low standby power (LP) process. This thesis presents the post-silicon validation results of these designs.
ContributorsGogulamudi, Anudeep Reddy (Author) / Clark, Lawrence T (Thesis advisor) / Holbert, Keith E. (Committee member) / Brunhaver, John (Committee member) / Arizona State University (Publisher)
Created2016
154862-Thumbnail Image.png
Description
The last decade has witnessed a paradigm shift in computing platforms, from laptops and servers to mobile devices like smartphones and tablets. These devices host an immense variety of applications many of which are computationally expensive and thus are power hungry. As most of these mobile platforms are powered by

The last decade has witnessed a paradigm shift in computing platforms, from laptops and servers to mobile devices like smartphones and tablets. These devices host an immense variety of applications many of which are computationally expensive and thus are power hungry. As most of these mobile platforms are powered by batteries, energy efficiency has become one of the most critical aspects of such devices. Thus, the energy cost of the fundamental arithmetic operations executed in these applications has to be reduced. As voltage scaling has effectively ended, the energy efficiency of integrated circuits has ceased to improve within successive generations of transistors. This resulted in widespread use of Application Specific Integrated Circuits (ASIC), which provide incredible energy efficiency. However, these are not flexible and have high non-recurring engineering (NRE) cost. Alternatively, Field Programmable Gate Arrays (FPGA) offer flexibility to implement any application, but at the cost of higher area and energy compared to ASIC.

In this work, a spatially programmable architecture customized for image processing applications is proposed. The intent is to bridge the efficiency gap between ASICs and FPGAs, by offering FPGA-like flexibility and ASIC-like energy efficiency. This architecture minimizes the energy overheads in FPGAs, which result from the use of fine-grained programming style and global interconnect. It is flexible compared to an ASIC and can accommodate multiple applications.

The main contribution of the thesis is the feasibility analysis of the data path of this architecture, customized for image processing applications. The data path is implemented at the register transfer level (RTL), and the synthesis results are obtained in 45nm technology cell library from a leading foundry. The results of image-processing applications demonstrate that this architecture is within a factor of 10x of the energy and area efficiency of ASIC implementations.
ContributorsSatapathy, Saktiswarup (Author) / Brunhaver, John (Thesis advisor) / Clark, Lawrence T (Committee member) / Ren, Fengbo (Committee member) / Arizona State University (Publisher)
Created2016
154977-Thumbnail Image.png
Description
Integrated circuits must be energy efficient. This efficiency affects all aspects of chip design, from the battery life of embedded devices to thermal heating on high performance servers. As technology scaling slows, future generations of transistors will lack the energy efficiency gains as it has had in previous generations. Therefore,

Integrated circuits must be energy efficient. This efficiency affects all aspects of chip design, from the battery life of embedded devices to thermal heating on high performance servers. As technology scaling slows, future generations of transistors will lack the energy efficiency gains as it has had in previous generations. Therefore, other sources of energy efficiency will be much more important. Many computations have the potential to be executed for extreme energy efficiency but are not instigated because the platforms they run on are not optimized for efficient execution. ASICs improve energy efficiency by reducing flexibility and leveraging the properties of a specific computation. However, ASICs are fixed in function and therefore have incredible opportunity cost. FPGAs offer a reconfigurable solution but are 25x less energy efficient than ASIC implementation. Spatially programmable architectures (SPAs) are similar in design and structure to ASICs and FPGAs but are able bridge the ASIC-FPGA energy efficiency gap by trading flexibility for efficiency. However, SPAs are difficult to program because they do not share the same programming model as normal architectures that execute in time. This work addresses compiler challenges for coarse grained, locally interconnected SPA for domain efficiency (SPADE). A novel SPADE topology, called the wave pipeline, is introduced that is designed for the image signal processing domain that is both efficient and simple to compile to. A compiler for the wave pipeline is created that solves for maximum energy and area efficiency using low complexity, greedy methods. The wave pipeline topology and compiler allow for us to investigate and experiment with image signal processing applications to prove the feasibility of SPADE compilers.
ContributorsMackay, Curtis (Author) / Brunhaver, John (Thesis advisor) / Karam, Lina J (Committee member) / Seo, Jae-Sun (Committee member) / Arizona State University (Publisher)
Created2016
155704-Thumbnail Image.png
Description
CMOS Technology has been scaled down to 7 nm with FinFET replacing planar MOSFET devices. Due to short channel effects, the FinFET structure was developed to provide better electrostatic control on subthreshold leakage and saturation current over planar MOSFETs while having the desired current drive. The FinFET structure has an

CMOS Technology has been scaled down to 7 nm with FinFET replacing planar MOSFET devices. Due to short channel effects, the FinFET structure was developed to provide better electrostatic control on subthreshold leakage and saturation current over planar MOSFETs while having the desired current drive. The FinFET structure has an undoped or fully depleted fin, which supports immunity from random dopant fluctuations (RDF – a phenomenon which causes a reduction in the threshold voltage and is prominent at sub 50 nm tech nodes due to lesser dopant atoms) and thus causes threshold voltage (Vth) roll-off by reducing the Vth. However, as the advanced CMOS technologies are shrinking down to a 5 nm technology node, subthreshold leakage and drain-induced-barrier-lowering (DIBL) are driving the introduction of new metal-oxide-semiconductor field-effect transistor (MOSFET) structures to improve performance. GAA field effect transistors are shown to be the potential candidates for these advanced nodes. In nanowire devices, due to the presence of the gate on all sides of the channel, DIBL should be lower compared to the FinFETs.

A 3-D technology computer aided design (TCAD) device simulation is done to compare the performance of FinFET and GAA nanowire structures with vertically stacked horizontal nanowires. Subthreshold slope, DIBL & saturation current are measured and compared between these devices. The FinFET’s device performance has been matched with the ASAP7 compact model with the impact of tensile and compressive strain on NMOS & PMOS respectively. Metal work function is adjusted for the desired current drive. The nanowires have shown better electrostatic performance over FinFETs with excellent improvement in DIBL and subthreshold slope. This proves that horizontal nanowires can be the potential candidate for 5 nm technology node. A GAA nanowire structure for 5 nm tech node is characterized with a gate length of 15 nm. The structure is scaled down from 7 nm node to 5 nm by using a scaling factor of 0.7.
ContributorsRana, Parshant (Author) / Clark, Lawrence (Thesis advisor) / Ferry, David (Committee member) / Brunhaver, John (Committee member) / Arizona State University (Publisher)
Created2017
155708-Thumbnail Image.png
Description
Static random-access memories (SRAM) are integral part of design systems as caches and data memories that and occupy one-third of design space. The work presents an embedded low power SRAM on a triple well process that allows body-biasing control. In addition to the normal mode operation, the design is embedded

Static random-access memories (SRAM) are integral part of design systems as caches and data memories that and occupy one-third of design space. The work presents an embedded low power SRAM on a triple well process that allows body-biasing control. In addition to the normal mode operation, the design is embedded with Physical Unclonable Function (PUF) [Suh07] and Sense Amplifier Test (SA Test) mode. With PUF mode structures, the fabrication and environmental mismatches in bit cells are used to generate unique identification bits. These bits are fixed and known as preferred state of an SRAM bit cell. The direct access test structure is a measurement unit for offset voltage analysis of sense amplifiers. These designs are manufactured using a foundry bulk CMOS 55 nm low-power (LP) process. The details about SRAM bit-cell and peripheral circuit design is discussed in detail, for certain cases the circuit simulation analysis is performed with random variations embedded in SPICE models. Further, post-silicon testing results are discussed for normal operation of SRAMs and the special test modes. The silicon and circuit simulation results for various tests are presented.
ContributorsDosi, Ankita (Author) / Clark, Lawrence (Thesis advisor) / Seo, Jae-Sun (Committee member) / Brunhaver, John (Committee member) / Arizona State University (Publisher)
Created2017
152389-Thumbnail Image.png
Description
The origin and function of color in animals has been a subject of great interest for taxonomists and ecologists in recent years. Coloration in animals is useful for many important functions like species identification, camouflage and understanding evolutionary relationships. Quantitative measurements of color signal and patch size in mammals, birds

The origin and function of color in animals has been a subject of great interest for taxonomists and ecologists in recent years. Coloration in animals is useful for many important functions like species identification, camouflage and understanding evolutionary relationships. Quantitative measurements of color signal and patch size in mammals, birds and reptiles, to name a few are strong indicators of sexual selection cues and individual health. These measurements provide valuable insights into the impact of environmental conditions on habitat and breeding of mammals, birds and reptiles. Recent advances in the area of digital cameras and sensors have led to a significant increase in the use of digital photography as a means of color quantification in animals. Although a significant amount of research has been conducted on ways to standardize image acquisition conditions and calibrate cameras for use in animal color quantification, almost no work has been done on designing automated methods for animal color quantification. This thesis presents a novel perceptual"–"based framework for the automated extraction and quantification of animal coloration from digital images with slowly varying (almost homogenous) background colors. This implemented framework uses a combination of several techniques including color space quantization using a few dominant colors, foreground"–"background identification, Bayesian classification and mixture Gaussian modelling of conditional densities, edge"–"enhanced model"–"based classification and Saturation"–"Brightness quantization to extract the colored patch. This approach assumes no prior information about the color of either the subject or the background and also the position of the subject in the image. The performance of the proposed method is evaluated for the plumage color of the wild house finches. Segmentation results obtained using the implemented framework are compared with manually scored results to illustrate the performance of this system. The segmentation results show a high correlation with manually scored images. This novel framework also eliminates common problems in manual scoring of digital images such as low repeatability and inter"–"observer error.
ContributorsBorkar, Tejas (Author) / Karam, Lina J (Thesis advisor) / Li, Baoxin (Committee member) / McGraw, Kevin J. (Committee member) / Arizona State University (Publisher)
Created2013