Matching Items (3)
Filtering by

Clear all filters

153271-Thumbnail Image.png
Description
This thesis presents a model for the buying behavior of consumers in a technology market. In this model, a potential consumer is not perfectly rational, but exhibits bounded rationality following the axioms of prospect theory: reference dependence, diminishing returns and loss sensitivity. To evaluate the products on different criteria, the

This thesis presents a model for the buying behavior of consumers in a technology market. In this model, a potential consumer is not perfectly rational, but exhibits bounded rationality following the axioms of prospect theory: reference dependence, diminishing returns and loss sensitivity. To evaluate the products on different criteria, the analytic hierarchy process is used, which allows for relative comparisons. The analytic hierarchy process proposes that when making a choice between several alternatives, one should measure the products by comparing them relative to each other. This allows the user to put numbers to subjective criteria. Additionally, evidence suggests that a consumer will often consider not only their own evaluation of a product, but also the choices of other consumers. Thus, the model in this paper applies prospect theory to products with multiple attributes using word of mouth as a criteria in the evaluation.
ContributorsElkholy, Alexander (Author) / Armbruster, Dieter (Thesis advisor) / Kempf, Karl (Committee member) / Li, Hongmin (Committee member) / Arizona State University (Publisher)
Created2014
157274-Thumbnail Image.png
Description
Bayesian Additive Regression Trees (BART) is a non-parametric Bayesian model

that often outperforms other popular predictive models in terms of out-of-sample error. This thesis studies a modified version of BART called Accelerated Bayesian Additive Regression Trees (XBART). The study consists of simulation and real data experiments comparing XBART to other leading

Bayesian Additive Regression Trees (BART) is a non-parametric Bayesian model

that often outperforms other popular predictive models in terms of out-of-sample error. This thesis studies a modified version of BART called Accelerated Bayesian Additive Regression Trees (XBART). The study consists of simulation and real data experiments comparing XBART to other leading algorithms, including BART. The results show that XBART maintains BART’s predictive power while reducing its computation time. The thesis also describes the development of a Python package implementing XBART.
ContributorsYalov, Saar (Author) / Hahn, P. Richard (Thesis advisor) / McCulloch, Robert (Committee member) / Kao, Ming-Hung (Committee member) / Arizona State University (Publisher)
Created2019
157571-Thumbnail Image.png
Description
Breeding seeds to include desirable traits (increased yield, drought/temperature resistance, etc.) is a growing and important method of establishing food security. However, besides breeder intuition, few decision-making tools exist that can provide the breeders with credible evidence to make decisions on which seeds to progress to further stages of development.

Breeding seeds to include desirable traits (increased yield, drought/temperature resistance, etc.) is a growing and important method of establishing food security. However, besides breeder intuition, few decision-making tools exist that can provide the breeders with credible evidence to make decisions on which seeds to progress to further stages of development. This thesis attempts to create a chance-constrained knapsack optimization model, which the breeder can use to make better decisions about seed progression and help reduce the levels of risk in their selections. The model’s objective is to select seed varieties out of a larger pool of varieties and maximize the average yield of the “knapsack” based on meeting some risk criteria. Two models are created for different cases. First is the risk reduction model which seeks to reduce the risk of getting a bad yield but still maximize the total yield. The second model considers the possibility of adverse environmental effects and seeks to mitigate the negative effects it could have on the total yield. In practice, breeders can use these models to better quantify uncertainty in selecting seed varieties
ContributorsOzcan, Ozkan Meric (Author) / Armbruster, Dieter (Thesis advisor) / Gel, Esma (Thesis advisor) / Sefair, Jorge (Committee member) / Arizona State University (Publisher)
Created2019