Matching Items (35)

Filtering by

Clear all filters

150969-Thumbnail Image.png

Sentimental bi-partite graph of political blogs

Description

Analysis of political texts, which contains a huge amount of personal political opinions, sentiments, and emotions towards powerful individuals, leaders, organizations, and a large number of people, is an interesting task, which can lead to discover interesting interactions between the

Analysis of political texts, which contains a huge amount of personal political opinions, sentiments, and emotions towards powerful individuals, leaders, organizations, and a large number of people, is an interesting task, which can lead to discover interesting interactions between the political parties and people. Recently, political blogosphere plays an increasingly important role in politics, as a forum for debating political issues. Most of the political weblogs are biased towards their political parties, and they generally express their sentiments towards their issues (i.e. leaders, topics etc.,) and also towards issues of the opposing parties. In this thesis, I have modeled the above interactions/debate as a sentimental bi-partite graph, a bi-partite graph with Blogs forming vertices of a disjoint set, and the issues (i.e. leaders, topics etc.,) forming the other disjoint set,and the edges between the two sets representing the sentiment of the blogs towards the issues. I have used American Political blog data to model the sentimental bi- partite graph, in particular, a set of popular political liberal and conservative blogs that have clearly declared positions. These blogs contain discussion about social, political, economic issues and related key individuals in their conservative/liberal view. To be more focused and more polarized, 22 most popular liberal/conservative blogs of a particular time period, May 2008 - October 2008(because of high intensity of debate and discussions), just before the presidential elections, was considered, involving around 23,800 articles. This thesis involves solving the questions: a) which is the most liberal/conservative blogs on the web? b) Who is on which side of debate and what are the issues? c) Who are the important leaders? d) How do you model the relationship between the participants of the debate and the underlying issues?

Contributors

Agent

Created

Date Created
2012

151517-Thumbnail Image.png

Industrial applications of data mining: engineering effort forecasting based on mining and analysis of patterns in historical project execution data

Description

Data mining is increasing in importance in solving a variety of industry problems. Our initiative involves the estimation of resource requirements by skill set for future projects by mining and analyzing actual resource consumption data from past projects in the

Data mining is increasing in importance in solving a variety of industry problems. Our initiative involves the estimation of resource requirements by skill set for future projects by mining and analyzing actual resource consumption data from past projects in the semiconductor industry. To achieve this goal we face difficulties like data with relevant consumption information but stored in different format and insufficient data about project attributes to interpret consumption data. Our first goal is to clean the historical data and organize it into meaningful structures for analysis. Once the preprocessing on data is completed, different data mining techniques like clustering is applied to find projects which involve resources of similar skillsets and which involve similar complexities and size. This results in "resource utilization templates" for groups of related projects from a resource consumption perspective. Then project characteristics are identified which generate this diversity in headcounts and skillsets. These characteristics are not currently contained in the data base and are elicited from the managers of historical projects. This represents an opportunity to improve the usefulness of the data collection system for the future. The ultimate goal is to match the product technical features with the resource requirement for projects in the past as a model to forecast resource requirements by skill set for future projects. The forecasting model is developed using linear regression with cross validation of the training data as the past project execution are relatively few in number. Acceptable levels of forecast accuracy are achieved relative to human experts' results and the tool is applied to forecast some future projects' resource demand.

Contributors

Agent

Created

Date Created
2013

149991-Thumbnail Image.png

Compressive sensing for computer vision and image processing

Description

With the introduction of compressed sensing and sparse representation,many image processing and computer vision problems have been looked at in a new way. Recent trends indicate that many challenging computer vision and image processing problems are being solved using compressive

With the introduction of compressed sensing and sparse representation,many image processing and computer vision problems have been looked at in a new way. Recent trends indicate that many challenging computer vision and image processing problems are being solved using compressive sensing and sparse representation algorithms. This thesis assays some applications of compressive sensing and sparse representation with regards to image enhancement, restoration and classication. The first application deals with image Super-Resolution through compressive sensing based sparse representation. A novel framework is developed for understanding and analyzing some of the implications of compressive sensing in reconstruction and recovery of an image through raw-sampled and trained dictionaries. Properties of the projection operator and the dictionary are examined and the corresponding results presented. In the second application a novel technique for representing image classes uniquely in a high-dimensional space for image classification is presented. In this method, design and implementation strategy of the image classification system through unique affine sparse codes is presented, which leads to state of the art results. This further leads to analysis of some of the properties attributed to these unique sparse codes. In addition to obtaining these codes, a strong classier is designed and implemented to boost the results obtained. Evaluation with publicly available datasets shows that the proposed method outperforms other state of the art results in image classication. The final part of the thesis deals with image denoising with a novel approach towards obtaining high quality denoised image patches using only a single image. A new technique is proposed to obtain highly correlated image patches through sparse representation, which are then subjected to matrix completion to obtain high quality image patches. Experiments suggest that there may exist a structure within a noisy image which can be exploited for denoising through a low-rank constraint.

Contributors

Agent

Created

Date Created
2011

149901-Thumbnail Image.png

Query expansion for handling exploratory and ambiguous keyword queries

Description

Query Expansion is a functionality of search engines that suggest a set of related queries for a user issued keyword query. In case of exploratory or ambiguous keyword queries, the main goal of the user would be to identify and

Query Expansion is a functionality of search engines that suggest a set of related queries for a user issued keyword query. In case of exploratory or ambiguous keyword queries, the main goal of the user would be to identify and select a specific category of query results among different categorical options, in order to narrow down the search and reach the desired result. Typical corpus-driven keyword query expansion approaches return popular words in the results as expanded queries. These empirical methods fail to cover all semantics of categories present in the query results. More importantly these methods do not consider the semantic relationship between the keywords featured in an expanded query. Contrary to a normal keyword search setting, these factors are non-trivial in an exploratory and ambiguous query setting where the user's precise discernment of different categories present in the query results is more important for making subsequent search decisions. In this thesis, I propose a new framework for keyword query expansion: generating a set of queries that correspond to the categorization of original query results, which is referred as Categorizing query expansion. Two approaches of algorithms are proposed, one that performs clustering as pre-processing step and then generates categorizing expanded queries based on the clusters. The other category of algorithms handle the case of generating quality expanded queries in the presence of imperfect clusters.

Contributors

Agent

Created

Date Created
2011

150190-Thumbnail Image.png

Sparse learning package with stability selection and application to alzheimer's disease

Description

Sparse learning is a technique in machine learning for feature selection and dimensionality reduction, to find a sparse set of the most relevant features. In any machine learning problem, there is a considerable amount of irrelevant information, and separating relevant

Sparse learning is a technique in machine learning for feature selection and dimensionality reduction, to find a sparse set of the most relevant features. In any machine learning problem, there is a considerable amount of irrelevant information, and separating relevant information from the irrelevant information has been a topic of focus. In supervised learning like regression, the data consists of many features and only a subset of the features may be responsible for the result. Also, the features might require special structural requirements, which introduces additional complexity for feature selection. The sparse learning package, provides a set of algorithms for learning a sparse set of the most relevant features for both regression and classification problems. Structural dependencies among features which introduce additional requirements are also provided as part of the package. The features may be grouped together, and there may exist hierarchies and over- lapping groups among these, and there may be requirements for selecting the most relevant groups among them. In spite of getting sparse solutions, the solutions are not guaranteed to be robust. For the selection to be robust, there are certain techniques which provide theoretical justification of why certain features are selected. The stability selection, is a method for feature selection which allows the use of existing sparse learning methods to select the stable set of features for a given training sample. This is done by assigning probabilities for the features: by sub-sampling the training data and using a specific sparse learning technique to learn the relevant features, and repeating this a large number of times, and counting the probability as the number of times a feature is selected. Cross-validation which is used to determine the best parameter value over a range of values, further allows to select the best parameter value. This is done by selecting the parameter value which gives the maximum accuracy score. With such a combination of algorithms, with good convergence guarantees, stable feature selection properties and the inclusion of various structural dependencies among features, the sparse learning package will be a powerful tool for machine learning research. Modular structure, C implementation, ATLAS integration for fast linear algebraic subroutines, make it one of the best tool for a large sparse setting. The varied collection of algorithms, support for group sparsity, batch algorithms, are a few of the notable functionality of the SLEP package, and these features can be used in a variety of fields to infer relevant elements. The Alzheimer Disease(AD) is a neurodegenerative disease, which gradually leads to dementia. The SLEP package is used for feature selection for getting the most relevant biomarkers from the available AD dataset, and the results show that, indeed, only a subset of the features are required to gain valuable insights.

Contributors

Agent

Created

Date Created
2011

150348-Thumbnail Image.png

Adaptive cross layer design and implementation for gigabit multimedia applications using 60 GHz wireless links

Description

Demands in file size and transfer rates for consumer-orientated products have escalated in recent times. This is primarily due to the emergence of high definition video content. Now factor in the consumer desire for convenience, and we find that wireless

Demands in file size and transfer rates for consumer-orientated products have escalated in recent times. This is primarily due to the emergence of high definition video content. Now factor in the consumer desire for convenience, and we find that wireless service is the most desired approach for inter-connectivity. Consumers expect wireless service to emulate wired service with little to virtually no difference in quality of service (QoS). The background section of this document examines the QoS requirements for wireless connectivity of high definition video applications. I then proceed to look at proposed solutions at the physical (PHY) and the media access control (MAC) layers as well as cross-layer schemes. These schemes are subsequently are evaluated in terms of usefulness in a multi-gigabit, 60 GHz wireless multimedia system targeting the average consumer. It is determined that a substantial gap in published literature exists pertinent to this application. Specifically, little or no work has been found that shows how an adaptive PHYMAC cross-layer solution that provides real-time compensation for varying channel conditions might be actually implemented. Further, no work has been found that shows results of such a model. This research proposes, develops and implements in Matlab code an alternate cross-layer solution that will provide acceptable QoS service for multimedia applications. Simulations using actual high definition video sequences are used to test the proposed solution. Results based on the average PSNR metric show that a quasi-adaptive algorithm provides greater than 7 dB of improvement over a non-adaptive approach while a fully-adaptive alogrithm provides over18 dB of improvement. The fully adaptive implementation has been conclusively shown to be superior to non-adaptive techniques and sufficiently superior to even quasi-adaptive algorithms.

Contributors

Agent

Created

Date Created
2011

150524-Thumbnail Image.png

SystemC TLM2.0 modeling of network-on-chip architecture

Description

Network-on-Chip (NoC) architectures have emerged as the solution to the on-chip communication challenges of multi-core embedded processor architectures. Design space exploration and performance evaluation of a NoC design requires fast simulation infrastructure. Simulation of register transfer level model of NoC

Network-on-Chip (NoC) architectures have emerged as the solution to the on-chip communication challenges of multi-core embedded processor architectures. Design space exploration and performance evaluation of a NoC design requires fast simulation infrastructure. Simulation of register transfer level model of NoC is too slow for any meaningful design space exploration. One of the solutions to reduce the speed of simulation is to increase the level of abstraction. SystemC TLM2.0 provides the capability to model hardware design at higher levels of abstraction with trade-off of simulation speed and accuracy. In this thesis, SystemC TLM2.0 models of NoC routers are developed at three levels of abstraction namely loosely-timed, approximately-timed, and cycle accurate. Simulation speed and accuracy of these three models are evaluated by a case study of a 4x4 mesh NoC.

Contributors

Agent

Created

Date Created
2012

150486-Thumbnail Image.png

Energy management in solar powered wireless sensor networks

Description

The use of energy-harvesting in a wireless sensor network (WSN) is essential for situations where it is either difficult or not cost effective to access the network's nodes to replace the batteries. In this paper, the problems involved in controlling

The use of energy-harvesting in a wireless sensor network (WSN) is essential for situations where it is either difficult or not cost effective to access the network's nodes to replace the batteries. In this paper, the problems involved in controlling an active sensor network that is powered both by batteries and solar energy are investigated. The objective is to develop control strategies to maximize the quality of coverage (QoC), which is defined as the minimum number of targets that must be covered and reported over a 24 hour period. Assuming a time varying solar profile, the problem is to optimally control the sensing range of each sensor so as to maximize the QoC while maintaining connectivity throughout the network. Implicit in the solution is the dynamic allocation of solar energy during the day to sensing and to recharging the battery so that a minimum coverage is guaranteed even during the night, when only the batteries can supply energy to the sensors. This problem turns out to be a non-linear optimal control problem of high complexity. Based on novel and useful observations, a method is presented to solve it as a series of quasiconvex (unimodal) optimization problems which not only ensures a maximum QoC, but also maintains connectivity throughout the network. The runtime of the proposed solution is 60X less than a naive but optimal method which is based on dynamic programming, while the peak error of the solution is less than 8%. Unlike the dynamic programming method, the proposed method is scalable to large networks consisting of hundreds of sensors and targets. The solution method enables a designer to explore the optimal configuration of network design. This paper offers many insights in the design of energy-harvesting networks, which result in minimum network setup cost through determination of optimal configuration of number of sensors, sensing beam width, and the sampling time.

Contributors

Agent

Created

Date Created
2012

150836-Thumbnail Image.png

A visualization dashboard for Muslim social movements

Description

Muslim radicalism is recognized as one of the greatest security threats for the United States and the rest of the world. Use of force to eliminate specific radical entities is ineffective in containing radicalism as a whole. There is a

Muslim radicalism is recognized as one of the greatest security threats for the United States and the rest of the world. Use of force to eliminate specific radical entities is ineffective in containing radicalism as a whole. There is a need to understand the origin, ideologies and behavior of Radical and Counter-Radical organizations and how they shape up over a period of time. Recognizing and supporting counter-radical organizations is one of the most important steps towards impeding radical organizations. A lot of research has already been done to categorize and recognize organizations, to understand their behavior, their interactions with other organizations, their target demographics and the area of influence. We have a huge amount of information which is a result of the research done over these topics. This thesis provides a powerful and interactive way to navigate through all this information, using a Visualization Dashboard. The dashboard makes it easier for Social Scientists, Policy Analysts, Military and other personnel to visualize an organization's propensity towards violence and radicalism. It also tracks the peaking religious, political and socio-economic markers, their target demographics and locations. A powerful search interface with parametric search helps in narrowing down to specific scenarios and view the corresponding information related to the organizations. This tool helps to identify moderate Counter-Radical organizations and also has the potential of predicting the orientation of various organizations based on the current information.

Contributors

Agent

Created

Date Created
2012

151004-Thumbnail Image.png

A tool for threading, organizing and presenting emails using a web interface

Description

The overall contribution of the Minerva Initiative at ASU is to map social organizations in a multidimensional space that provides a measure of their radical or counter radical influence over the demographics of a nation. This tool serves as a

The overall contribution of the Minerva Initiative at ASU is to map social organizations in a multidimensional space that provides a measure of their radical or counter radical influence over the demographics of a nation. This tool serves as a simple content management system to store and track project resources like documents, images, videos and web links. It provides centralized and secure access to email conversations among project team members. Conversations are categorized into one of the seven pre-defined categories. Each category is associated with a certain set of keywords and we follow a frequency based approach for matching email conversations with the categories. The interface is hosted as a web application which can be accessed by the project team.

Contributors

Agent

Created

Date Created
2012