Matching Items (52)
Filtering by

Clear all filters

150353-Thumbnail Image.png
Description
Advancements in computer vision and machine learning have added a new dimension to remote sensing applications with the aid of imagery analysis techniques. Applications such as autonomous navigation and terrain classification which make use of image classification techniques are challenging problems and research is still being carried out to find

Advancements in computer vision and machine learning have added a new dimension to remote sensing applications with the aid of imagery analysis techniques. Applications such as autonomous navigation and terrain classification which make use of image classification techniques are challenging problems and research is still being carried out to find better solutions. In this thesis, a novel method is proposed which uses image registration techniques to provide better image classification. This method reduces the error rate of classification by performing image registration of the images with the previously obtained images before performing classification. The motivation behind this is the fact that images that are obtained in the same region which need to be classified will not differ significantly in characteristics. Hence, registration will provide an image that matches closer to the previously obtained image, thus providing better classification. To illustrate that the proposed method works, naïve Bayes and iterative closest point (ICP) algorithms are used for the image classification and registration stages respectively. This implementation was tested extensively in simulation using synthetic images and using a real life data set called the Defense Advanced Research Project Agency (DARPA) Learning Applied to Ground Robots (LAGR) dataset. The results show that the ICP algorithm does help in better classification with Naïve Bayes by reducing the error rate by an average of about 10% in the synthetic data and by about 7% on the actual datasets used.
ContributorsMuralidhar, Ashwini (Author) / Saripalli, Srikanth (Thesis advisor) / Papandreou-Suppappola, Antonia (Committee member) / Turaga, Pavan (Committee member) / Arizona State University (Publisher)
Created2011
149915-Thumbnail Image.png
Description
Spotlight mode synthetic aperture radar (SAR) imaging involves a tomo- graphic reconstruction from projections, necessitating acquisition of large amounts of data in order to form a moderately sized image. Since typical SAR sensors are hosted on mobile platforms, it is common to have limitations on SAR data acquisi- tion, storage

Spotlight mode synthetic aperture radar (SAR) imaging involves a tomo- graphic reconstruction from projections, necessitating acquisition of large amounts of data in order to form a moderately sized image. Since typical SAR sensors are hosted on mobile platforms, it is common to have limitations on SAR data acquisi- tion, storage and communication that can lead to data corruption and a resulting degradation of image quality. It is convenient to consider corrupted samples as missing, creating a sparsely sampled aperture. A sparse aperture would also result from compressive sensing, which is a very attractive concept for data intensive sen- sors such as SAR. Recent developments in sparse decomposition algorithms can be applied to the problem of SAR image formation from a sparsely sampled aperture. Two modified sparse decomposition algorithms are developed, based on well known existing algorithms, modified to be practical in application on modest computa- tional resources. The two algorithms are demonstrated on real-world SAR images. Algorithm performance with respect to super-resolution, noise, coherent speckle and target/clutter decomposition is explored. These algorithms yield more accu- rate image reconstruction from sparsely sampled apertures than classical spectral estimators. At the current state of development, sparse image reconstruction using these two algorithms require about two orders of magnitude greater processing time than classical SAR image formation.
ContributorsWerth, Nicholas (Author) / Karam, Lina (Thesis advisor) / Papandreou-Suppappola, Antonia (Committee member) / Spanias, Andreas (Committee member) / Arizona State University (Publisher)
Created2011
149902-Thumbnail Image.png
Description
For synthetic aperture radar (SAR) image formation processing, the chirp scaling algorithm (CSA) has gained considerable attention mainly because of its excellent target focusing ability, optimized processing steps, and ease of implementation. In particular, unlike the range Doppler and range migration algorithms, the CSA is easy to implement since it

For synthetic aperture radar (SAR) image formation processing, the chirp scaling algorithm (CSA) has gained considerable attention mainly because of its excellent target focusing ability, optimized processing steps, and ease of implementation. In particular, unlike the range Doppler and range migration algorithms, the CSA is easy to implement since it does not require interpolation, and it can be used on both stripmap and spotlight SAR systems. Another transform that can be used to enhance the processing of SAR image formation is the fractional Fourier transform (FRFT). This transform has been recently introduced to the signal processing community, and it has shown many promising applications in the realm of SAR signal processing, specifically because of its close association to the Wigner distribution and ambiguity function. The objective of this work is to improve the application of the FRFT in order to enhance the implementation of the CSA for SAR processing. This will be achieved by processing real phase-history data from the RADARSAT-1 satellite, a multi-mode SAR platform operating in the C-band, providing imagery with resolution between 8 and 100 meters at incidence angles of 10 through 59 degrees. The phase-history data will be processed into imagery using the conventional chirp scaling algorithm. The results will then be compared using a new implementation of the CSA based on the use of the FRFT, combined with traditional SAR focusing techniques, to enhance the algorithm's focusing ability, thereby increasing the peak-to-sidelobe ratio of the focused targets. The FRFT can also be used to provide focusing enhancements at extended ranges.
ContributorsNorthrop, Judith (Author) / Papandreou-Suppappola, Antonia (Thesis advisor) / Spanias, Andreas (Committee member) / Tepedelenlioğlu, Cihan (Committee member) / Arizona State University (Publisher)
Created2011
150175-Thumbnail Image.png
Description
The tracking of multiple targets becomes more challenging in complex environments due to the additional degrees of nonlinearity in the measurement model. In urban terrain, for example, there are multiple reflection path measurements that need to be exploited since line-of-sight observations are not always available. Multiple target tracking in urban

The tracking of multiple targets becomes more challenging in complex environments due to the additional degrees of nonlinearity in the measurement model. In urban terrain, for example, there are multiple reflection path measurements that need to be exploited since line-of-sight observations are not always available. Multiple target tracking in urban terrain environments is traditionally implemented using sequential Monte Carlo filtering algorithms and data association techniques. However, data association techniques can be computationally intensive and require very strict conditions for efficient performance. This thesis investigates the probability hypothesis density (PHD) method for tracking multiple targets in urban environments. The PHD is based on the theory of random finite sets and it is implemented using the particle filter. Unlike data association methods, it can be used to estimate the number of targets as well as their corresponding tracks. A modified maximum-likelihood version of the PHD (MPHD) is proposed to automatically and adaptively estimate the measurement types available at each time step. Specifically, the MPHD allows measurement-to-nonlinearity associations such that the best matched measurement can be used at each time step, resulting in improved radar coverage and scene visibility. Numerical simulations demonstrate the effectiveness of the MPHD in improving tracking performance, both for tracking multiple targets and targets in clutter.
ContributorsZhou, Meng (Author) / Papandreou-Suppappola, Antonia (Thesis advisor) / Tepedelenlioğlu, Cihan (Committee member) / Kovvali, Narayan (Committee member) / Arizona State University (Publisher)
Created2011
151480-Thumbnail Image.png
Description
The use of electromyography (EMG) signals to characterize muscle fatigue has been widely accepted. Initial work on characterizing muscle fatigue during isometric contractions demonstrated that its frequency decreases while its amplitude increases with the onset of fatigue. More recent work concentrated on developing techniques to characterize dynamic contractions for use

The use of electromyography (EMG) signals to characterize muscle fatigue has been widely accepted. Initial work on characterizing muscle fatigue during isometric contractions demonstrated that its frequency decreases while its amplitude increases with the onset of fatigue. More recent work concentrated on developing techniques to characterize dynamic contractions for use in clinical and training applications. Studies demonstrated that as fatigue progresses, the EMG signal undergoes a shift in frequency, and different physiological mechanisms on the possible cause of the shift were considered. Time-frequency processing, using the Wigner distribution or spectrogram, is one of the techniques used to estimate the instantaneous mean frequency and instantaneous median frequency of the EMG signal using a variety of techniques. However, these time-frequency methods suffer either from cross-term interference when processing signals with multiple components or time-frequency resolution due to the use of windowing. This study proposes the use of the matching pursuit decomposition (MPD) with a Gaussian dictionary to process EMG signals produced during both isometric and dynamic contractions. In particular, the MPD obtains unique time-frequency features that represent the EMG signal time-frequency dependence without suffering from cross-terms or loss in time-frequency resolution. As the MPD does not depend on an analysis window like the spectrogram, it is more robust in applying the timefrequency features to identify the spectral time-variation of the EGM signal.
ContributorsAustin, Hiroko (Author) / Papandreou-Suppappola, Antonia (Thesis advisor) / Kovvali, Narayan (Committee member) / Muthuswamy, Jitendran (Committee member) / Arizona State University (Publisher)
Created2012
151700-Thumbnail Image.png
Description
Ultrasound imaging is one of the major medical imaging modalities. It is cheap, non-invasive and has low power consumption. Doppler processing is an important part of many ultrasound imaging systems. It is used to provide blood velocity information and is built on top of B-mode systems. We investigate the performance

Ultrasound imaging is one of the major medical imaging modalities. It is cheap, non-invasive and has low power consumption. Doppler processing is an important part of many ultrasound imaging systems. It is used to provide blood velocity information and is built on top of B-mode systems. We investigate the performance of two velocity estimation schemes used in Doppler processing systems, namely, directional velocity estimation (DVE) and conventional velocity estimation (CVE). We find that DVE provides better estimation performance and is the only functioning method when the beam to flow angle is large. Unfortunately, DVE is computationally expensive and also requires divisions and square root operations that are hard to implement. We propose two approximation techniques to replace these computations. The simulation results on cyst images show that the proposed approximations do not affect the estimation performance. We also study backend processing which includes envelope detection, log compression and scan conversion. Three different envelope detection methods are compared. Among them, FIR based Hilbert Transform is considered the best choice when phase information is not needed, while quadrature demodulation is a better choice if phase information is necessary. Bilinear and Gaussian interpolation are considered for scan conversion. Through simulations of a cyst image, we show that bilinear interpolation provides comparable contrast-to-noise ratio (CNR) performance with Gaussian interpolation and has lower computational complexity. Thus, bilinear interpolation is chosen for our system.
ContributorsWei, Siyuan (Author) / Chakrabarti, Chaitali (Thesis advisor) / Frakes, David (Committee member) / Papandreou-Suppappola, Antonia (Committee member) / Arizona State University (Publisher)
Created2013
151996-Thumbnail Image.png
Description
Despite the arid climate of Maricopa County, Arizona, vector-borne diseases have presented significant health challenges to the residents and public health professionals of Maricopa County in the past, and will continue to do so in the foreseeable future. Currently, West Nile virus is the only mosquitoes-transmitted disease actively, and natively,

Despite the arid climate of Maricopa County, Arizona, vector-borne diseases have presented significant health challenges to the residents and public health professionals of Maricopa County in the past, and will continue to do so in the foreseeable future. Currently, West Nile virus is the only mosquitoes-transmitted disease actively, and natively, transmitted throughout the state of Arizona. In an effort to gain a more complete understanding of the transmission dynamics of West Nile virus this thesis examines human, vector, and environment interactions as they exist within Maricopa County. Through ethnographic and geographic information systems research methods this thesis identifies 1) the individual factors that influence residents' knowledge and behaviors regarding mosquitoes, 2) the individual and regional factors that influence residents' knowledge of mosquito ecology and the spatial distribution of local mosquito populations, and 3) the environmental, demographic, and socioeconomic factors that influence mosquito abundance within Maricopa County. By identifying the factors that influence human-vector and vector-environment interactions, the results of this thesis may influence current and future educational and mosquito control efforts throughout Maricopa County.
ContributorsKunzweiler, Colin (Author) / Boone, Christopher (Thesis advisor) / Wutich, Amber (Committee member) / Brewis-Slade, Alexandra (Committee member) / Arizona State University (Publisher)
Created2013
151382-Thumbnail Image.png
Description
A signal with time-varying frequency content can often be expressed more clearly using a time-frequency representation (TFR), which maps the signal into a two-dimensional function of time and frequency, similar to musical notation. The thesis reviews one of the most commonly used TFRs, the Wigner distribution (WD), and discusses its

A signal with time-varying frequency content can often be expressed more clearly using a time-frequency representation (TFR), which maps the signal into a two-dimensional function of time and frequency, similar to musical notation. The thesis reviews one of the most commonly used TFRs, the Wigner distribution (WD), and discusses its application in Fourier optics: it is shown that the WD is analogous to the spectral dispersion that results from a diffraction grating, and time and frequency are similarly analogous to a one dimensional spatial coordinate and wavenumber. The grating is compared with a simple polychromator, which is a bank of optical filters. Another well-known TFR is the short time Fourier transform (STFT). Its discrete version can be shown to be equivalent to a filter bank, an array of bandpass filters that enable localized processing of the analysis signals in different sub-bands. This work proposes a signal-adaptive method of generating TFRs. In order to minimize distortion in analyzing a signal, the method modifies the filter bank to consist of non-overlapping rectangular bandpass filters generated using the Butterworth filter design process. The information contained in the resulting TFR can be used to reconstruct the signal, and perfect reconstruction techniques involving quadrature mirror filter banks are compared with a simple Fourier synthesis sum. The optimal filter parameters of the rectangular filters are selected adaptively by minimizing the mean-squared error (MSE) from a pseudo-reconstructed version of the analysis signal. The reconstruction MSE is proposed as an error metric for characterizing TFRs; a practical measure of the error requires normalization and cross correlation with the analysis signal. Simulations were performed to demonstrate the the effectiveness of the new adaptive TFR and its relation to swept-tuned spectrum analyzers.
ContributorsWeber, Peter C. (Author) / Papandreou-Suppappola, Antonia (Thesis advisor) / Tepedelenlioğlu, Cihan (Committee member) / Kovvali, Narayan (Committee member) / Arizona State University (Publisher)
Created2012
150930-Thumbnail Image.png
Description
In this thesis, an integrated waveform-agile multi-modal tracking-beforedetect sensing system is investigated and the performance is evaluated using an experimental platform. The sensing system of adapting asymmetric multi-modal sensing operation platforms using radio frequency (RF) radar and electro-optical (EO) sensors allows for integration of complementary information from different sensors. However,

In this thesis, an integrated waveform-agile multi-modal tracking-beforedetect sensing system is investigated and the performance is evaluated using an experimental platform. The sensing system of adapting asymmetric multi-modal sensing operation platforms using radio frequency (RF) radar and electro-optical (EO) sensors allows for integration of complementary information from different sensors. However, there are many challenges to overcome, including tracking low signal-to-noise ratio (SNR) targets, waveform configurations that can optimize tracking performance and statistically dependent measurements. Address some of these challenges, a particle filter (PF) based recursive waveformagile track-before-detect (TBD) algorithm is developed to avoid information loss caused by conventional detection under low SNR environments. Furthermore, a waveform-agile selection technique is integrated into the PF-TBD to allow for adaptive waveform configurations. The embedded exponential family (EEF) approach is used to approximate distributions of parameters of dependent RF and EO measurements and to further improve target detection rate and tracking performance. The performance of the integrated algorithm is evaluated using real data from three experimental scenarios.
ContributorsLiu, Shubo (Author) / Papandreou-Suppappola, Antonia (Thesis advisor) / Duman, Tolga (Committee member) / Kovvali, Narayan (Committee member) / Arizona State University (Publisher)
Created2012
150830-Thumbnail Image.png
Description
Research on developing new algorithms to improve information on brain functionality and structure is ongoing. Studying neural activity through dipole source localization with electroencephalography (EEG) and magnetoencephalography (MEG) sensor measurements can lead to diagnosis and treatment of a brain disorder and can also identify the area of the brain from

Research on developing new algorithms to improve information on brain functionality and structure is ongoing. Studying neural activity through dipole source localization with electroencephalography (EEG) and magnetoencephalography (MEG) sensor measurements can lead to diagnosis and treatment of a brain disorder and can also identify the area of the brain from where the disorder has originated. Designing advanced localization algorithms that can adapt to environmental changes is considered a significant shift from manual diagnosis which is based on the knowledge and observation of the doctor, to an adaptive and improved brain disorder diagnosis as these algorithms can track activities that might not be noticed by the human eye. An important consideration of these localization algorithms, however, is to try and minimize the overall power consumption in order to improve the study and treatment of brain disorders. This thesis considers the problem of estimating dynamic parameters of neural dipole sources while minimizing the system's overall power consumption; this is achieved by minimizing the number of EEG/MEG measurements sensors without a loss in estimation performance accuracy. As the EEG/MEG measurements models are related non-linearity to the dipole source locations and moments, these dynamic parameters can be estimated using sequential Monte Carlo methods such as particle filtering. Due to the large number of sensors required to record EEG/MEG Measurements for use in the particle filter, over long period recordings, a large amounts of power is required for storage and transmission. In order to reduce the overall power consumption, two methods are proposed. The first method used the predicted mean square estimation error as the performance metric under the constraint of a maximum power consumption. The performance metric of the second method uses the distance between the location of the sensors and the location estimate of the dipole source at the previous time step; this sensor scheduling scheme results in maximizing the overall signal-to-noise ratio. The performance of both methods is demonstrated using simulated data, and both methods show that they can provide good estimation results with significant reduction in the number of activated sensors at each time step.
ContributorsMichael, Stefanos (Author) / Papandreou-Suppappola, Antonia (Thesis advisor) / Chakrabarti, Chaitali (Committee member) / Kovvali, Narayan (Committee member) / Arizona State University (Publisher)
Created2012