Matching Items (40)
Filtering by

Clear all filters

157745-Thumbnail Image.png
Description
Artificial general intelligence consists of many components, one of which is Natural Language Understanding (NLU). One of the applications of NLU is Reading Comprehension where it is expected that a system understand all aspects of a text. Further, understanding natural procedure-describing text that deals with existence of entities and effects

Artificial general intelligence consists of many components, one of which is Natural Language Understanding (NLU). One of the applications of NLU is Reading Comprehension where it is expected that a system understand all aspects of a text. Further, understanding natural procedure-describing text that deals with existence of entities and effects of actions on these entities while doing reasoning and inference at the same time is a particularly difficult task. A recent natural language dataset by the Allen Institute of Artificial Intelligence, ProPara, attempted to address the challenges to determine entity existence and entity tracking in natural text.

As part of this work, an attempt is made to address the ProPara challenge. The Knowledge Representation and Reasoning (KRR) community has developed effective techniques for modeling and reasoning about actions and similar techniques are used in this work. A system consisting of Inductive Logic Programming (ILP) and Answer Set Programming (ASP) is used to address the challenge and achieves close to state-of-the-art results and provides an explainable model. An existing semantic role label parser is modified and used to parse the dataset.

On analysis of the learnt model, it was found that some of the rules were not generic enough. To overcome the issue, the Proposition Bank dataset is then used to add knowledge in an attempt to generalize the ILP learnt rules to possibly improve the results.
ContributorsBhattacharjee, Aurgho (Author) / Baral, Chitta (Thesis advisor) / Yang, Yezhou (Committee member) / Anwar, Saadat (Committee member) / Arizona State University (Publisher)
Created2019
157902-Thumbnail Image.png
Description
Social networking sites like Twitter have provided people a platform to connect

with each other, to discuss and share information and news or to entertain themselves. As the number of users continues to grow there has been explosive growth in the data generated by these users. Such a vast data source

Social networking sites like Twitter have provided people a platform to connect

with each other, to discuss and share information and news or to entertain themselves. As the number of users continues to grow there has been explosive growth in the data generated by these users. Such a vast data source has provided researchers a way to study and monitor public health.

Accurately analyzing tweets is a difficult task mainly because of their short length, the inventive spellings and creative language expressions. Instead of focusing at the topic level, identifying tweets that have personal health experience mentions would be more helpful to researchers, governments and other organizations. Another important limitation in the current systems for social media health applications is the use of a disease-specific model and dataset to study a particular disease. Identifying adverse drug reactions is an important part of the drug development process. Detecting and extracting adverse drug mentions in tweets can supplement the list of adverse drug reactions that result from the drug trials and can help in the improvement of the drugs.

This thesis aims to address these two challenges and proposes three systems. A generalizable system to identify personal health experience mentions across different disease domains, a system for automatic classifications of adverse effects mentions in tweets and a system to extract adverse drug mentions from tweets. The proposed systems use the transfer learning from language models to achieve notable scores on Social Media Mining for Health Applications(SMM4H) 2019 (Weissenbacher et al. 2019) shared tasks.
ContributorsGondane, Shubham Bhagwan (Author) / Baral, Chitta (Thesis advisor) / Anwar, Saadat (Committee member) / Devarakonda, Murthy (Committee member) / Arizona State University (Publisher)
Created2019
158555-Thumbnail Image.png
Description
Referring Expression Comprehension (REC) is an important area of research in Natural Language Processing (NLP) and vision domain. It involves locating an object in an image described by a natural language referring expression. This task requires information from both Natural Language and Vision aspect. The task is compositional in nature

Referring Expression Comprehension (REC) is an important area of research in Natural Language Processing (NLP) and vision domain. It involves locating an object in an image described by a natural language referring expression. This task requires information from both Natural Language and Vision aspect. The task is compositional in nature as it requires visual reasoning as underlying process along with relationships among the objects in the image. Recent works based on modular networks have

displayed to be an effective framework for performing visual reasoning task.

Although this approach is effective, it has been established that the current benchmark datasets for referring expression comprehension suffer from bias. Recent work on CLEVR-Ref+ dataset deals with bias issues by constructing a synthetic dataset

and provides an approach for the aforementioned task which performed better than the previous state-of-the-art models as well as showing the reasoning process. This work aims to improve the performance on CLEVR-Ref+ dataset and achieve comparable interpretability. In this work, the neural module network approach with the attention map technique is employed. The neural module network is composed of the primitive operation modules which are specific to their functions and the output is generated using a separate segmentation module. From empirical results, it is clear that this approach is performing significantly better than the current State-of-theart in one aspect (Predicted programs) and achieving comparable results for another aspect (Ground truth programs)
ContributorsRathor, Kuldeep Singh (Author) / Baral, Chitta (Thesis advisor) / Yang, Yezhou (Committee member) / Simeone, Michael (Committee member) / Arizona State University (Publisher)
Created2020
158389-Thumbnail Image.png
Description
One of the measures to determine the intelligence of a system is through Question Answering, as it requires a system to comprehend a question and reason using its knowledge base to accurately answer it. Qualitative word problems are an important subset of such problems, as they require a system to

One of the measures to determine the intelligence of a system is through Question Answering, as it requires a system to comprehend a question and reason using its knowledge base to accurately answer it. Qualitative word problems are an important subset of such problems, as they require a system to recognize and reason with qualitative knowledge expressed in natural language. Traditional approaches in this domain include multiple modules to parse a given problem and to perform the required reasoning. Recent approaches involve using large pre-trained Language models like the Bidirection Encoder Representations from Transformers for downstream question answering tasks through supervision. These approaches however either suffer from errors between multiple modules, or are not interpretable with respect to the reasoning process employed. The proposed solution in this work aims to overcome these drawbacks through a single end-to-end trainable model that performs both the required parsing and reasoning. The parsing is achieved through an attention mechanism, whereas the reasoning is performed in vector space using soft logic operations. The model also enforces constraints in the form of auxiliary loss terms to increase the interpretability of the underlying reasoning process. The work achieves state of the art accuracy on the QuaRel dataset and matches that of the QuaRTz dataset with additional interpretability.
ContributorsNarayana, Sanjay (Author) / Baral, Chitta (Thesis advisor) / Mitra, Arindam (Committee member) / Anwar, Saadat (Committee member) / Arizona State University (Publisher)
Created2020
161705-Thumbnail Image.png
Description
Reverse engineers use decompilers to analyze binaries when their source code is unavailable. A binary decompiler attempts to transform binary programs to their corresponding high-level source code by recovering and inferring the information that was lost during the compilation process. One type of information that is lost during compilation is

Reverse engineers use decompilers to analyze binaries when their source code is unavailable. A binary decompiler attempts to transform binary programs to their corresponding high-level source code by recovering and inferring the information that was lost during the compilation process. One type of information that is lost during compilation is variable names, which are critical for reverse engineers to analyze and understand programs. Traditional binary decompilers generally use automatically generated, placeholder variable names that are meaningless or have little correlation with their intended semantics. Having correct or meaningful variable names in decompiled code, instead of placeholder variable names, greatly increases the readability of decompiled binary code. Decompiled Identifier Renaming Engine (DIRE) is a state-of-the-art, deep-learning-based solution that automatically predicts variable names in decompiled binary code. However, DIRE's prediction result is far from perfect. The first goal of this research project is to take a close look at the current state-of-the-art solution for automated variable name prediction on decompilation output of binary code, assess the prediction quality, and understand how the prediction result can be improved. Then, as the second goal of this research project, I aim to improve the prediction quality of variable names. With a thorough understanding of DIRE's issues, I focus on improving the quality of training data. This thesis proposes a novel approach to improving the quality of the training data by normalizing variable names and converting their abbreviated forms to their full forms. I implemented and evaluated the proposed approach on a data set of over 10k and 20k binaries and showed improvements over DIRE.
ContributorsBajaj, Ati Priya (Author) / Wang, Ruoyu (Thesis advisor) / Baral, Chitta (Committee member) / Shoshitaishvili, Yan (Committee member) / Arizona State University (Publisher)
Created2021
157871-Thumbnail Image.png
Description
Significance of real-world knowledge for Natural Language Understanding(NLU) is well-known for decades. With advancements in technology, challenging tasks like question-answering, text-summarizing, and machine translation are made possible with continuous efforts in the field of Natural Language Processing(NLP). Yet, knowledge integration to answer common sense questions is still a daunting task.

Significance of real-world knowledge for Natural Language Understanding(NLU) is well-known for decades. With advancements in technology, challenging tasks like question-answering, text-summarizing, and machine translation are made possible with continuous efforts in the field of Natural Language Processing(NLP). Yet, knowledge integration to answer common sense questions is still a daunting task. Logical reasoning has been a resort for many of the problems in NLP and has achieved considerable results in the field, but it is difficult to resolve the ambiguities in a natural language. Co-reference resolution is one of the problems where ambiguity arises due to the semantics of the sentence. Another such problem is the cause and result statements which require causal commonsense reasoning to resolve the ambiguity. Modeling these type of problems is not a simple task with rules or logic. State-of-the-art systems addressing these problems use a trained neural network model, which claims to have overall knowledge from a huge trained corpus. These systems answer the questions by using the knowledge embedded in their trained language model. Although the language models embed the knowledge from the data, they use occurrences of words and frequency of co-existing words to solve the prevailing ambiguity. This limits the performance of language models to solve the problems in common-sense reasoning task as it generalizes the concept rather than trying to answer the problem specific to its context. For example, "The painting in Mark's living room shows an oak tree. It is to the right of a house", is a co-reference resolution problem which requires knowledge. Language models can resolve whether "it" refers to "painting" or "tree", since "house" and "tree" are two common co-occurring words so the models can resolve "tree" to be the co-reference. On the other hand, "The large ball crashed right through the table. Because it was made of Styrofoam ." to resolve for "it" which can be either "table" or "ball", is difficult for a language model as it requires more information about the problem.

In this work, I have built an end-to-end framework, which uses the automatically extracted knowledge based on the problem. This knowledge is augmented with the language models using an explicit reasoning module to resolve the ambiguity. This system is built to improve the accuracy of the language models based approaches for commonsense reasoning. This system has proved to achieve the state of the art accuracy on the Winograd Schema Challenge.
ContributorsPrakash, Ashok (Author) / Baral, Chitta (Thesis advisor) / Devarakonda, Murthy (Committee member) / Anwar, Saadat (Committee member) / Arizona State University (Publisher)
Created2019
161838-Thumbnail Image.png
Description
Visual question answering (VQA) is a task that answers the questions by giving an image, and thus involves both language and vision methods to solve, which make the VQA tasks a frontier interdisciplinary field. In recent years, as the great progress made in simple question tasks (e.g. object recognition), researchers

Visual question answering (VQA) is a task that answers the questions by giving an image, and thus involves both language and vision methods to solve, which make the VQA tasks a frontier interdisciplinary field. In recent years, as the great progress made in simple question tasks (e.g. object recognition), researchers start to shift their interests to the questions that require knowledge and reasoning. Knowledge-based VQA requires answering questions with external knowledge in addition to the content of images. One dataset that is mostly used in evaluating knowledge-based VQA is OK-VQA, but it lacks a gold standard knowledge corpus for retrieval. Existing work leverages different knowledge bases (e.g., ConceptNet and Wikipedia) to obtain external knowledge. Because of varying knowledge bases, it is hard to fairly compare models' performance. To address this issue, this paper collects a natural language knowledge base that can be used for any question answering (QA) system. Moreover, a Visual Retriever-Reader pipeline is proposed to approach knowledge-based VQA, where the visual retriever aims to retrieve relevant knowledge, and the visual reader seeks to predict answers based on given knowledge. The retriever is constructed with two versions: term based retriever which uses best matching 25 (BM25), and neural based retriever where the latest dense passage retriever (DPR) is introduced. To encode the visual information, the image and caption are encoded separately in the two kinds of neural based retriever: Image-DPR and Caption-DPR. There are also two styles of readers, classification reader and extraction reader. Both the retriever and reader are trained with weak supervision. The experimental results show that a good retriever can significantly improve the reader's performance on the OK-VQA challenge.
ContributorsZeng, Yankai (Author) / Baral, Chitta (Thesis advisor) / Yang, Yezhou (Committee member) / Ghayekhloo, Samira (Committee member) / Arizona State University (Publisher)
Created2021
Description
Self-Driving cars are a long-lasting ambition for many AI scientists and engineers. In the last decade alone, many self-driving cars like Google Waymo, Tesla Autopilot, Uber, etc. have been roaming the streets of many cities. As a rapidly expanding field, researchers all over the world are attempting to develop more

Self-Driving cars are a long-lasting ambition for many AI scientists and engineers. In the last decade alone, many self-driving cars like Google Waymo, Tesla Autopilot, Uber, etc. have been roaming the streets of many cities. As a rapidly expanding field, researchers all over the world are attempting to develop more safe and efficient AI agents that can navigate through our cities. However, driving is a very complex task to master even for a human, let alone the challenges in developing robots to do the same. It requires attention and inputs from the surroundings of the car, and it is nearly impossible for us to program all the possible factors affecting this complex task. As a solution, imitation learning was introduced, wherein the agents learn a policy, mapping the observations to the actions through demonstrations given by humans. Through imitation learning, one could easily teach self-driving cars the expected behavior in many scenarios. Despite their autonomous nature, it is undeniable that humans play a vital role in the development and execution of safe and trustworthy self-driving cars and hence form the strongest link in this application of Human-Robot Interaction. Several approaches were taken to incorporate this link between humans and self-driving cars, one of which involves the communication of human's navigational instruction to self-driving cars. The communicative channel provides humans with control over the agent’s decisions as well as the ability to guide them in real-time. In this work, the abilities of imitation learning in creating a self-driving agent that can follow natural language instructions given by humans based on environmental objects’ descriptions were explored. The proposed model architecture is capable of handling latent temporal context in these instructions thus making the agent capable of taking multiple decisions along its course. The work shows promising results that push the boundaries of natural language instructions and their complexities in navigating self-driving cars through towns.
ContributorsMoudhgalya, Nithish B (Author) / Amor, Hani Ben (Thesis advisor) / Baral, Chitta (Committee member) / Yang, Yezhou (Committee member) / Zhang, Wenlong (Committee member) / Arizona State University (Publisher)
Created2021
161889-Thumbnail Image.png
Description
Systematic Reviews (SRs) aim to synthesize the totality of evidence for clinical practice and are important in making clinical practice guidelines and health policy decisions. However, conducting SRs manually is a laborious and time-consuming process. This challenge is growing due to the increase in the number of databases to search

Systematic Reviews (SRs) aim to synthesize the totality of evidence for clinical practice and are important in making clinical practice guidelines and health policy decisions. However, conducting SRs manually is a laborious and time-consuming process. This challenge is growing due to the increase in the number of databases to search and the papers being published. Hence, the automation of SRs is an essential task. The goal of this thesis work is to develop Natural Language Processing (NLP)-based classifiers to automate the title and abstract-based screening for clinical SRs based on inclusion/exclusion criteria. In clinical SRs, a high-sensitivity system is a key requirement. Most existing methods for SRs use binary classification systems trained on labeled data to predict inclusion/exclusion. While previous studies have shown that NLP-based classification methods can automate title and abstract-based screening for SRs, methods for achieving high-sensitivity have not been empirically studied. In addition, the training strategy for binary classification has several limitations: (1) it ignores the inclusion/exclusion criteria, (2) lacks generalization ability, (3) suffers from low resource data, and (4) fails to achieve reasonable precision at high-sensitivity levels. This thesis work presents contributions to several aspects of the clinical systematic review domain. First, it presents an empirical study of NLP-based supervised text classification and high-sensitivity methods on datasets developed from six different SRs in the clinical domain. Second, this thesis work provides a novel approach to view SR as a Question Answering (QA) problem in order to overcome the limitations of the binary classification training strategy; and propose a more general abstract screening model for different SRs. Finally, this work provides a new QA-based dataset for six different SRs which is made available to the community.
ContributorsParmar, Mihir Prafullsinh (Author) / Baral, Chitta (Thesis advisor) / Devarakonda, Murthy (Thesis advisor) / Riaz, Irbaz B (Committee member) / Arizona State University (Publisher)
Created2021
156898-Thumbnail Image.png
Description
Virtual digital assistants are automated software systems which assist humans by understanding natural languages such as English, either in voice or textual form. In recent times, a lot of digital applications have shifted towards providing a user experience using natural language interface. The change is brought up by the degree

Virtual digital assistants are automated software systems which assist humans by understanding natural languages such as English, either in voice or textual form. In recent times, a lot of digital applications have shifted towards providing a user experience using natural language interface. The change is brought up by the degree of ease with which the virtual digital assistants such as Google Assistant and Amazon Alexa can be integrated into your application. These assistants make use of a Natural Language Understanding (NLU) system which acts as an interface to translate unstructured natural language data into a structured form. Such an NLU system uses an intent finding algorithm which gives a high-level idea or meaning of a user query, termed as intent classification. The intent classification step identifies the action(s) that a user wants the assistant to perform. The intent classification step is followed by an entity recognition step in which the entities in the utterance are identified on which the intended action is performed. This step can be viewed as a sequence labeling task which maps an input word sequence into a corresponding sequence of slot labels. This step is also termed as slot filling.

In this thesis, we improve the intent classification and slot filling in the virtual voice agents by automatic data augmentation. Spoken Language Understanding systems face the issue of data sparsity. The reason behind this is that it is hard for a human-created training sample to represent all the patterns in the language. Due to the lack of relevant data, deep learning methods are unable to generalize the Spoken Language Understanding model. This thesis expounds a way to overcome the issue of data sparsity in deep learning approaches on Spoken Language Understanding tasks. Here we have described the limitations in the current intent classifiers and how the proposed algorithm uses existing knowledge bases to overcome those limitations. The method helps in creating a more robust intent classifier and slot filling system.
ContributorsGarg, Prashant (Author) / Baral, Chitta (Thesis advisor) / Kumar, Hemanth (Committee member) / Yang, Yezhou (Committee member) / Arizona State University (Publisher)
Created2018