Matching Items (75)
Filtering by

Clear all filters

152239-Thumbnail Image.png
Description
Production from a high pressure gas well at a high production-rate encounters the risk of operating near the choking condition for a compressible flow in porous media. The unbounded gas pressure gradient near the point of choking, which is located near the wellbore, generates an effective tensile stress on the

Production from a high pressure gas well at a high production-rate encounters the risk of operating near the choking condition for a compressible flow in porous media. The unbounded gas pressure gradient near the point of choking, which is located near the wellbore, generates an effective tensile stress on the porous rock frame. This tensile stress almost always exceeds the tensile strength of the rock and it causes a tensile failure of the rock, leading to wellbore instability. In a porous rock, not all pores are choked at the same flow rate, and when just one pore is choked, the flow through the entire porous medium should be considered choked as the gas pressure gradient at the point of choking becomes singular. This thesis investigates the choking condition for compressible gas flow in a single microscopic pore. Quasi-one-dimensional analysis and axisymmetric numerical simulations of compressible gas flow in a pore scale varicose tube with a number of bumps are carried out, and the local Mach number and pressure along the tube are computed for the flow near choking condition. The effects of tube length, inlet-to-outlet pressure ratio, the number of bumps and the amplitude of the bumps on the choking condition are obtained. These critical values provide guidance for avoiding the choking condition in practice.
ContributorsYuan, Jing (Author) / Chen, Kangping (Thesis advisor) / Wang, Liping (Committee member) / Huang, Huei-Ping (Committee member) / Arizona State University (Publisher)
Created2013
152249-Thumbnail Image.png
Description
For CFD validation, hypersonic flow fields are simulated and compared with experimental data specifically designed to recreate conditions found by hypersonic vehicles. Simulated flow fields on a cone-ogive with flare at Mach 7.2 are compared with experimental data from NASA Ames Research Center 3.5" hypersonic wind tunnel. A parametric study

For CFD validation, hypersonic flow fields are simulated and compared with experimental data specifically designed to recreate conditions found by hypersonic vehicles. Simulated flow fields on a cone-ogive with flare at Mach 7.2 are compared with experimental data from NASA Ames Research Center 3.5" hypersonic wind tunnel. A parametric study of turbulence models is presented and concludes that the k-kl-omega transition and SST transition turbulence model have the best correlation. Downstream of the flare's shockwave, good correlation is found for all boundary layer profiles, with some slight discrepancies of the static temperature near the surface. Simulated flow fields on a blunt cone with flare above Mach 10 are compared with experimental data from CUBRC LENS hypervelocity shock tunnel. Lack of vibrational non-equilibrium calculations causes discrepancies in heat flux near the leading edge. Temperature profiles, where non-equilibrium effects are dominant, are compared with the dissociation of molecules to show the effects of dissociation on static temperature. Following the validation studies is a parametric analysis of a hypersonic inlet from Mach 6 to 20. Compressor performance is investigated for numerous cowl leading edge locations up to speeds of Mach 10. The variable cowl study showed positive trends in compressor performance parameters for a range of Mach numbers that arise from maximizing the intake of compressed flow. An interesting phenomenon due to the change in shock wave formation for different Mach numbers developed inside the cowl that had a negative influence on the total pressure recovery. Investigation of the hypersonic inlet at different altitudes is performed to study the effects of Reynolds number, and consequently, turbulent viscous effects on compressor performance. Turbulent boundary layer separation was noted as the cause for a change in compressor performance parameters due to a change in Reynolds number. This effect would not be noticeable if laminar flow was assumed. Mach numbers up to 20 are investigated to study the effects of vibrational and chemical non-equilibrium on compressor performance. A direct impact on the trends on the kinetic energy efficiency and compressor efficiency was found due to dissociation.
ContributorsOliden, Daniel (Author) / Lee, Tae-Woo (Thesis advisor) / Peet, Yulia (Committee member) / Huang, Huei-Ping (Committee member) / Arizona State University (Publisher)
Created2013
152067-Thumbnail Image.png
Description
A new theoretical model was developed utilizing energy conservation methods in order to determine the fully-atomized cross-sectional Sauter mean diameters of pressure-swirl atomizers. A detailed boundary-layer assessment led to the development of a new viscous dissipation model for droplets in the spray. Integral momentum methods were also used to determine

A new theoretical model was developed utilizing energy conservation methods in order to determine the fully-atomized cross-sectional Sauter mean diameters of pressure-swirl atomizers. A detailed boundary-layer assessment led to the development of a new viscous dissipation model for droplets in the spray. Integral momentum methods were also used to determine the complete velocity history of the droplets and entrained gas in the spray. The model was extensively validated through comparison with experiment and it was found that the model could predict the correct droplet size with high accuracy for a wide range of operating conditions. Based on detailed analysis, it was found that the energy model has a tendency to overestimate the droplet diameters for very low injection velocities, Weber numbers, and cone angles. A full parametric study was also performed in order to unveil some underlying behavior of pressure-swirl atomizers. It was found that at high injection velocities, the kinetic energy in the spray is significantly larger than the surface tension energy, therefore, efforts into improving atomization quality by changing the liquid's surface tension may not be the most productive. From the parametric studies it was also shown how the Sauter mean diameter and entrained velocities vary with increasing ambient gas density. Overall, the present energy model has the potential to provide quick and reasonably accurate solutions for a wide range of operating conditions enabling the user to determine how different injection parameters affect the spray quality.
ContributorsMoradi, Ali (Author) / Lee, Taewoo (Thesis advisor) / Herrmann, Marcus (Committee member) / Huang, Huei-Ping (Committee member) / Arizona State University (Publisher)
Created2013
151755-Thumbnail Image.png
Description
Chris Miller's Souvenirs of Sleep is as serious as it is whimsical, if this is a possibility. The "Museum of the Zoo-real" may be an equally appropriate title as animals are often in performance. In this visual and spiritual investigation, childhood, dream, and the loss of a mother to suicide

Chris Miller's Souvenirs of Sleep is as serious as it is whimsical, if this is a possibility. The "Museum of the Zoo-real" may be an equally appropriate title as animals are often in performance. In this visual and spiritual investigation, childhood, dream, and the loss of a mother to suicide are the currents. Miller's work is informed by the cinema of Werner Herzog, Andrei Tarkovsky, Robert Bresson and beyond. Miller believes in the power of implication. The poems begin with intense focus, but are often in the business of expansion. Souvenirs of Sleep is a journey toward sense-making, a search for language that might allow it.
ContributorsMiller, Christopher (Author) / Dubie, Norman (Thesis advisor) / Hogue, Cynthia (Committee member) / Ball, Sally (Committee member) / Arizona State University (Publisher)
Created2013
151923-Thumbnail Image.png
Description
A collection of poems that explore what it means to be from the Atomic City-- a city built atop cleared-out rural communities in East Tennessee during World War II, and with the sole and secretive purpose of enriching uranium for the atomic bomb. The poems look back to the more

A collection of poems that explore what it means to be from the Atomic City-- a city built atop cleared-out rural communities in East Tennessee during World War II, and with the sole and secretive purpose of enriching uranium for the atomic bomb. The poems look back to the more isolated Appalachian culture of previous generations, discovering the identity rifts caused by such massive and rushed development. In trying to understand the poet's own cultural inheritance of both nuclear weaponry and an Appalachian hardness, the poems begin to meditate on inhabitation. They ask what it means to live in a country, a local community, a body. The poems travel far beyond the Atomic City's limits, incorporating characters that live, in some sense, at the edge of a community. As he crosses the Atlantic, the Spanish poet Jiménez wonders if either sound or vision are more trustworthy tools for perception; an aging grandmother in Tennessee realizes that she still "drives" her younger body in her dreams; an American woman becomes aroused after touring the killing fields in Cambodia; and the prophet of Oak Ridge, who supposedly predicted the Manhattan Project, considers how his baby daughter has become a thing after death. The various voices show the poet grappling with her own guilt over Hiroshima, and ultimately attempt to understand the limits of both grief and love, how one inherits a tragedy.
ContributorsSams, Sara (Author) / Hogue, Cynthia (Thesis advisor) / Ball, Sally (Committee member) / Dubie, Norman (Committee member) / Arizona State University (Publisher)
Created2013
151924-Thumbnail Image.png
Description
Ranging in subject from a Tuareg festival outside Timbuktu to the 1975 "Battle of the Sexes" race at Belmont track to a Mississippi classroom in the Delta flood plains, the poems in The Body Snatcher's Complaint explore the blurring of self hood, a feeling of foreignness within one's own physical

Ranging in subject from a Tuareg festival outside Timbuktu to the 1975 "Battle of the Sexes" race at Belmont track to a Mississippi classroom in the Delta flood plains, the poems in The Body Snatcher's Complaint explore the blurring of self hood, a feeling of foreignness within one's own physical experience of the world, in the most intimate and global contexts.
ContributorsMurray, Catherine (Author) / Hogue, Cynthia (Thesis advisor) / Ball, Sally (Committee member) / Hummer, Terry (Committee member) / Arizona State University (Publisher)
Created2013
151643-Thumbnail Image.png
Description
Cruz del Sur is an exploration of what it means to be an outsider: as a resident, as a foreigner, from the perspective of the human eye, or from the perspective of a camera lens. An unlikely blending of voices, these poems embark the reader on a journey across a

Cruz del Sur is an exploration of what it means to be an outsider: as a resident, as a foreigner, from the perspective of the human eye, or from the perspective of a camera lens. An unlikely blending of voices, these poems embark the reader on a journey across a continent, and also into an interior: a mystical quest.
ContributorsMontgomery, Scott (Author) / Dubie, Norman (Thesis advisor) / Hogue, Cynthia (Committee member) / Hummer, Terry (Committee member) / Arizona State University (Publisher)
Created2013
151645-Thumbnail Image.png
Description
Gas turbines have become widely used in the generation of power for cities. They are used all over the world and must operate under a wide variety of ambient conditions. Every turbine has a temperature at which it operates at peak capacity. In order to attain this temperature in the

Gas turbines have become widely used in the generation of power for cities. They are used all over the world and must operate under a wide variety of ambient conditions. Every turbine has a temperature at which it operates at peak capacity. In order to attain this temperature in the hotter months various cooling methods are used such as refrigeration inlet cooling systems, evaporative methods, and thermal energy storage systems. One of the more widely used is the evaporative systems because it is one of the safest and easiest to utilize method. However, the behavior of water droplets within the inlet to the turbine has not been extensively studied or documented. It is important to understand how the droplets behave within the inlet so that water droplets above a critical diameter will not enter the compressor and cause damage to the compressor blades. In order to do this a FLUENT simulation was constructed in order to determine the behavior of the water droplets and if any droplets remain at the exit of the inlet, along with their size. In order to do this several engineering drawings were obtained from SRP and studies in order to obtain the correct dimensions. Then the simulation was set up using data obtained from SRP and Parker-Hannifin, the maker of the spray nozzles. Then several sets of simulations were run in order to see how the water droplets behaved under various conditions. These results were then analyzed and quantified so that they could be easily understood. The results showed that the possible damage to the compressor increased with increasing temperature at a constant relative humidity. This is due in part to the fact that in order to keep a constant relative humidity at varying temperatures the mass fraction of water vapor in the air must be changed. As temperature increases the water vapor mass fraction must increase in order to maintain a constant relative humidity. This in turn makes it slightly increases the evaporation time of the water droplets. This will then lead to more droplets exiting the inlet and at larger diameters.
ContributorsHargrave, Kevin (Author) / Lee, Taewoo (Thesis advisor) / Huang, Huei-Ping (Committee member) / Chen, Kaangping (Committee member) / Arizona State University (Publisher)
Created2013
151294-Thumbnail Image.png
Description
The partitioning of available solar energy into different fluxes at the Earth's surface is important in determining different physical processes, such as turbulent transport, subsurface hydrology, land-atmospheric interactions, etc. Direct measurements of these turbulent fluxes were carried out using eddy-covariance (EC) towers. However, the distribution of EC towers is sparse

The partitioning of available solar energy into different fluxes at the Earth's surface is important in determining different physical processes, such as turbulent transport, subsurface hydrology, land-atmospheric interactions, etc. Direct measurements of these turbulent fluxes were carried out using eddy-covariance (EC) towers. However, the distribution of EC towers is sparse due to relatively high cost and practical difficulties in logistics and deployment. As a result, data is temporally and spatially limited and is inadequate to be used for researches at large scales, such as regional and global climate modeling. Besides field measurements, an alternative way is to estimate turbulent fluxes based on the intrinsic relations between surface energy budget components, largely through thermodynamic equilibrium. These relations, referred as relative efficiency, have been included in several models to estimate the magnitude of turbulent fluxes in surface energy budgets such as latent heat and sensible heat. In this study, three theoretical models based on the lumped heat transfer model, the linear stability analysis and the maximum entropy principle respectively, were investigated. Model predictions of relative efficiencies were compared with turbulent flux data over different land covers, viz. lake, grassland and suburban surfaces. Similar results were observed over lake and suburban surface but significant deviation is found over vegetation surface. The relative efficiency of outgoing longwave radiation is found to be orders of magnitude deviated from theoretic predictions. Meanwhile, results show that energy partitioning process is influenced by the surface water availability to a great extent. The study provides insight into what property is determining energy partitioning process over different land covers and gives suggestion for future models.
ContributorsYang, Jiachuan (Author) / Wang, Zhihua (Thesis advisor) / Huang, Huei-Ping (Committee member) / Vivoni, Enrique (Committee member) / Mays, Larry (Committee member) / Arizona State University (Publisher)
Created2012
151300-Thumbnail Image.png
Description
The Fledglings of Anani is a universe with an underlying organizing principle of desire, auspiciousness and serendipity, the veiled doors and windows of these realms serve as fugues bridging layers of time leading us through myth and landscape intimately tied to the physical intelligence of earth and character of place.

The Fledglings of Anani is a universe with an underlying organizing principle of desire, auspiciousness and serendipity, the veiled doors and windows of these realms serve as fugues bridging layers of time leading us through myth and landscape intimately tied to the physical intelligence of earth and character of place. It is a voice that comes to know itself first as being, then in correspondence to nature and her elements, enters into the rhythm of human connection and ultimately circles back to comprehend itself as all these things, varying only in degree. The poems travel further and further toward an allusive center with a contemplative inner eye that embraces the complexity and vitality of life.
ContributorsPoole, Heather Lea (Author) / Dubie, Norman (Thesis advisor) / Hogue, Cynthia (Committee member) / Savard, Jeannine (Committee member) / Arizona State University (Publisher)
Created2012