Matching Items (45)
Filtering by

Clear all filters

153728-Thumbnail Image.png
Description
Adenosine triphosphate (ATP) is the universal chemical energy currency in most living cells, used to power many cellular reactions and generated by an enzyme supercomplex known as the ATP synthase, consisting of a hydrophilic F1 subcomplex and a membrane-bound FO subcomplex. Driven by the electrochemical gradient generated by the respiratory

Adenosine triphosphate (ATP) is the universal chemical energy currency in most living cells, used to power many cellular reactions and generated by an enzyme supercomplex known as the ATP synthase, consisting of a hydrophilic F1 subcomplex and a membrane-bound FO subcomplex. Driven by the electrochemical gradient generated by the respiratory or photosynthetic electron transport chain, the rotation of the FO domain drives movements of the central stalk in response to conformational changes in the F1 domain, in which the physical energy is converted into chemical energy through the condensation of ADP and Pi to ATP. The exact mechanism how ATP synthesis is coupled to proton translocation is not known as no structure of the intact ATP-synthase nor the intact FO subcomplex has been determined to date. Structural information may shed light on these mechanisms and aid in understanding how structural changed relate to its coupling to ATP synthesis. The work in this thesis has successful established a defined large-scale CF1FO isolation procedure resulting in high purity and high yield of this complex from spinach thylakoid membranes by incorporating a unique combination of biochemical methods will form the basis for the subsequent structural determination of this complex. Isolation began from the isolation of intact chloroplasts and the separation of intact thylakoid membranes. Both native and denaturing electrophoresis analyses clearly demonstrated that the purified CF1FO retains its quaternary structure consisting of the CF1 and CFO subcomplexes and nine subunits (five F1 subunits: α, β, γ, δ and ε, and four FO subunits: a, b, b' and c). Moreover, both ATP synthesis and hydrolysis activities were successfully detected using protein reconstitution in combination with acid-base incubation and in-gel ATPase assays, respectively. Furthermore, the ATP-synthase of H. modesticaldum, an anaerobic photosynthetic bacterium, was also isolated and characterized at the biochemical level. These biochemical characterizations directly influenced recent studies on the high-resolution structure determination of intact CF1FO using electron crystallography on two-dimensional crystals. The availability of the functionally intact CF1FO purified at a large scale will lead to studies that investigate the possible crystallization conditions to ultimately determine its three-dimensional structure at atomic resolution.
ContributorsYang, Jay-How (Author) / Fromme, Petra (Thesis advisor) / Redding, Kevin (Committee member) / Gould, Ian (Committee member) / Arizona State University (Publisher)
Created2015
153729-Thumbnail Image.png
Description
CTB-MPR649-684 is a translational fusion protein consisting of the cholera toxin B subunit (CTB) and the conserved residues 649-684 of gp41 membrane proximal region (MPR). It is a candidate vaccine component aimed at early steps of the HIV-1 infection by blocking viral mucosal transmission. Bacterially produced CTB-MPR was previously shown

CTB-MPR649-684 is a translational fusion protein consisting of the cholera toxin B subunit (CTB) and the conserved residues 649-684 of gp41 membrane proximal region (MPR). It is a candidate vaccine component aimed at early steps of the HIV-1 infection by blocking viral mucosal transmission. Bacterially produced CTB-MPR was previously shown to induce HIV-1 transcytosis-blocking antibodies in mice and rabbits. However, the induction of high-titer MPR specific antibodies with HIV-1 transcytosis blocking ability remains a challenge as the immuno-dominance of CTB overshadows the response to MPR. X-ray crystallography was used to investigate the structure of CTB-MPR with the goal of identifying potential solutions to improve the immune response of MPR. Various CTB-MPR variants were designed using different linkers connecting the two fusion proteins. The procedures for over-expression E. coli and purification have been optimized for each of the variants of CTB-MPR. The purity and oligomeric homogeneity of the fusion protein was demonstrated by electrophoresis, size-exclusion chromatography, dynamic light scattering, and immuno-blot analysis. Crystallization conditions for macroscopic and micro
ano-crystals have been established for the different variants of the fusion protein. Diffraction patterns were collected by using both conventional and serial femto-second crystallography techniques. The two crystallography techniques showed very interesting differences in both the crystal packing and unit cell dimensions of the same CTB-MPR construct. Although information has been gathered on CTB-MPR, the intact structure of fusion protein was not solved as the MPR region showed only weak electron density or was cleaved during crystallization of macroscopic crystals. The MPR region is present in micro
ano-crystals, but due to the severe limitation of the Free Electron Laser beamtime, only a partial data set was obtained and is insufficient for structure determination. However, the work of this thesis has established methods to purify large quantities of CTB-MPR and has established procedures to grow crystals for X-ray structure analysis. This has set the foundation for future structure determination experiments as well as immunization studies.
ContributorsLee, Ho-Hsien (Author) / Fromme, Petra (Thesis advisor) / Mor, Tsafrir (Committee member) / Ros, Alexandra (Committee member) / Arizona State University (Publisher)
Created2015
152672-Thumbnail Image.png
Description
Photosynthesis is the primary source of energy for most living organisms. Light harvesting complexes (LHC) play a vital role in harvesting sunlight and passing it on to the protein complexes of the electron transfer chain which create the electrochemical potential across the membrane which drives ATP synthesis. phycobilisomes (PBS) are

Photosynthesis is the primary source of energy for most living organisms. Light harvesting complexes (LHC) play a vital role in harvesting sunlight and passing it on to the protein complexes of the electron transfer chain which create the electrochemical potential across the membrane which drives ATP synthesis. phycobilisomes (PBS) are the most important LHCs in cyanobacteria. PBS is a complex of three light harvesting proteins: phycoerythrin (PE), phycocyanin (PC) and allophycocyanin (APC). This work has been done on a newly discovered cyanobacterium called Leptolyngbya Heron Island (L.HI). This study has three important goals: 1) Sequencing, assembly and annotation of the L.HI genome - Since this is a newly discovered cyanobacterium, its genome was not previously elucidated. Illumina sequencing, a type of next generation sequencing (NGS) technology was employed to sequence the genome. Unfortunately, the natural isolate contained other contaminating and potentially symbiotic bacterial populations. A novel bioinformatics strategy for separating DNA from contaminating bacterial populations from that of L.HI was devised which involves a combination of tetranucleotide frequency, %(G+C), BLAST analysis and gene annotation. 2) Structural elucidation of phycoerythrin - Phycoerythrin is the most important protein in the PBS assembly because it is one of the few light harvesting proteins which absorbs green light. The protein was crystallized and its structure solved to a resolution of 2Å. This protein contains two chemically distinct types of chromophores: phycourobilin and phycoerythrobilin. Energy transfer calculations indicate that there is unidirectional flow of energy from phycourobilin to phycoerythrobilin. Energy transfer time constants using Forster energy transfer theory have been found to be consistent with experimental data available in literature. 3) Effect of chromatic acclimation on photosystems - Chromatic acclimation is a phenomenon in which an organism modulates the ratio of PE/PC with change in light conditions. Our investigation in case of L.HI has revealed that the PE is expressed more in green light than PC in red light. This leads to unequal harvesting of light in these two states. Therefore, photosystem II expression is increased in red-light acclimatized cells coupled with an increase in number of PBS.
ContributorsPaul, Robin (Author) / Fromme, Petra (Thesis advisor) / Ros, Alexandra (Committee member) / Roberson, Robert (Committee member) / Arizona State University (Publisher)
Created2014
153026-Thumbnail Image.png
Description
The AAA+ ATPase Rubisco activase (Rca) regulates the activity of Rubisco, the photosynthetic enzyme responsible for catalyzing biological carbon fixation. However, the detailed mechanism by which Rca self-association controls Rubisco reactivation activity remains poorly understood. In this work, we are using fluorescence correlation spectroscopy (FCS) to better characterize the thermodynamics

The AAA+ ATPase Rubisco activase (Rca) regulates the activity of Rubisco, the photosynthetic enzyme responsible for catalyzing biological carbon fixation. However, the detailed mechanism by which Rca self-association controls Rubisco reactivation activity remains poorly understood. In this work, we are using fluorescence correlation spectroscopy (FCS) to better characterize the thermodynamics of the assembly process of cotton Rca. We present FCS data for Rca in the presence of Mg*ATPgS and Mg*ADP and for the D173N Walker B motif mutant in the presence of Mg*ATP. Our data are consistent with promotion and stabilization of hexamers by Mg*ATPgS and Mg*ATP, whereas Mg*ADP facilitates continuous assembly. We find that in the presence of Mg·ADP, Rca self-associates in a step-wise fashion to form oligomeric and higher order forms, with a strong size dependence on subunit concentration. The monomer is the dominant species below 0.5 micromolar, whereas the hexamer appears to be most populated in the 10-30 micromolar range. Large assemblies containing on the order of 24 subunits become dominant above 40 micromolar, with continued assembly at even higher concentrations. Our data are consistent with a highly dynamic exchange of subunits among oligomeric species of diverse sizes. The most likely ADP-mediated assembly mechanism seems to involve the formation of spiral supra-molecular structures that grow along the helical axis by the step-wise addition of dimeric units. To examine the effect of Mg·ATP on oligomerization, we have generated the D173N mutant of Rca, which binds but does not hydrolyze ATP. In range of 8 and 70 micromolar, 60-80% of Rca is predicted to form hexamers in the presence of Mg*ATP compared to just 30-40% with Mg*ADP. We see a clear trend at which hexamerization occurs at high ATP:ADP ratios and in addition, at increasing concentrations of free magnesium ions to 5 milimolar that results in formation of six subunits. We present an assembly model where Mg*ATP promotes and stabilizes hexamerization at low micromolar Rca concentrations relative to Mg*ADP, and suggest that this results from closed ring hexamer formation in Mg*ATP and open hexameric spiral formation in Mg*ADP .
ContributorsKuriata, Agnieszka (Author) / Wachter, Rebekka (Thesis advisor) / Redding, Kevin (Thesis advisor) / Ghirlanda, Giovanna (Committee member) / Ros, Alexandra (Committee member) / Arizona State University (Publisher)
Created2014
153167-Thumbnail Image.png
Description
The transmembrane subunit (gp41) of the envelope glycoprotein of HIV-1 associates noncovalently with the surface subunit (gp120) and together they play essential roles in viral mucosal transmission and infection of target cells. The membrane proximal region (MPR, residues 649-683) of gp41 is highly conserved and contains epitopes of broadly neutralizing

The transmembrane subunit (gp41) of the envelope glycoprotein of HIV-1 associates noncovalently with the surface subunit (gp120) and together they play essential roles in viral mucosal transmission and infection of target cells. The membrane proximal region (MPR, residues 649-683) of gp41 is highly conserved and contains epitopes of broadly neutralizing antibodies. The transmembrane (TM) domain (residues 684-705) of gp41 not only anchors the envelope glycoprotein complex in the viral membrane but also dynamically affects the interactions of the MPR with the membrane. While high-resolution X-ray structures of some segments of the MPR were solved in the past, they represent the pre-fusion and post-fusion conformations, most of which could not react with the broadly neutralizing antibodies 2F5 and 4E10. Structural information on the TM domain of gp41 is scant and at low resolution.

This thesis describes the structural studies of MPR-TM (residues 649-705) of HIV-1 gp41 by X-ray crystallography. MPR-TM was fused with different fusion proteins to improve the membrane protein overexpression. The expression level of MPR-TM was improved by fusion to the C-terminus of the Mistic protein, yielding ∼1 mg of pure MPR-TM protein per liter cell culture. The fusion partner Mistic was removed for final crystallization. The isolated MPR-TM protein was biophysically characterized and is a monodisperse candidate for crystallization. However, no crystal with diffraction quality was obtained even after extensive crystallization screens. A novel construct was designed to overexpress MPR-TM as a maltose binding protein (MBP) fusion. About 60 mg of MBP/MPR-TM recombinant protein was obtained from 1 liter of cell culture. Crystals of MBP/MPR-TM recombinant protein could not be obtained when MBP and MPR-TM were separated by a 42 amino acid (aa)-long linker but were obtained after changing the linker to three alanine residues. The crystals diffracted to 2.5 Å after crystallization optimization. Further analysis of the diffraction data indicated that the crystals are twinned. The final structure demonstrated that MBP crystallized as a dimer of trimers, but the electron density did not extend beyond the linker region. We determined by SDS-PAGE and MALDI-TOF MS that the crystals contained MBP only. The MPR-TM of gp41 might be cleaved during or after the process of crystallization. Comparison of the MBP trimer reported here with published trimeric MBP fusion structures indicated that MBP might form such a trimeric conformation under the effect of MPR-TM.
ContributorsGong, Zhen (Author) / Fromme, Petra (Thesis advisor) / Mor, Tsafrir (Thesis advisor) / Ros, Alexandra (Committee member) / Redding, Kevin (Committee member) / Arizona State University (Publisher)
Created2014
155985-Thumbnail Image.png
Description
Microfluidics has shown great potential in rapid isolation, sorting, and concentration of bioparticles upon its discovery. Over the past decades, significant improvements have been made in device fabrication techniques and microfluidic methodologies. As a result, considerable microfluidic-based isolation and concentration techniques have been developed, particularly for rapid pathogen detection. Among

Microfluidics has shown great potential in rapid isolation, sorting, and concentration of bioparticles upon its discovery. Over the past decades, significant improvements have been made in device fabrication techniques and microfluidic methodologies. As a result, considerable microfluidic-based isolation and concentration techniques have been developed, particularly for rapid pathogen detection. Among all microfluidic techniques, dielectrophoresis (DEP) is one of the most effective and efficient techniques to quickly isolate and separate polarizable particles under inhomogeneous electric field. To date, extensive studies have demonstrated that DEP devices are able to precisely manipulate cells ranging from over 10 μm (mammalian cells) down to about 1 μm (small bacteria). However, very limited DEP studies on manipulating submicron bioparticles, such as viruses, have been reported.

In this dissertation, rapid capture and concentration of two different and representative types of virus particles (Sindbis virus and bacteriophage M13) with gradient insulator-based DEP (g-iDEP) has been demonstrated. Sindbis virus has a near-spherical shape with a diameter ~68 nm, while bacteriophage M13 has a filamentous shape with a length ~900 nm and a diameter ~6 nm. Under specific g-iDEP experimental conditions, the concentration of Sindbis virus can be increased two to six times within only a few seconds, using easily accessible voltages as low as 70 V. A similar phenomenon is also observed with bacteriophage M13. Meanwhile, their different DEP behavior predicts the potential of separating viruses with carefully designed microchannels and choices of experimental condition.

DEP-based microfluidics also shows great potential in manipulating blood samples, specifically rapid separations of blood cells and proteins. To investigate the ability of g-iDEP device in blood sample manipulation, some proofs of principle work was accomplished including separating two cardiac disease-related proteins (myoglobin and heart-type fatty acid binding protein) and red blood cells (RBCs). Consistent separation was observed, showing retention of RBCs and passage of the two spiked protein biomarkers. The numerical concentration of RBCs was reduced (~70 percent after one minute) with the purified proteins available for detection or further processing. This study explores and extends the use of the device from differentiating similar particles to acting as a sample pretreatment step.
ContributorsDing, Jie (Author) / Hayes, Mark A. (Thesis advisor) / Ros, Alexandra (Committee member) / Buttry, Daniel A (Committee member) / Arizona State University (Publisher)
Created2017
Description
Serial femtosecond crystallography (SFX) with X-ray free electron lasers (XFELs) has enabled the determination of damage-free protein structures at ambient temperatures and of reaction intermediate species with time resolution on the order of hundreds of femtoseconds. However, currently available XFEL facility X-ray pulse structures waste the majority of continuously injected

Serial femtosecond crystallography (SFX) with X-ray free electron lasers (XFELs) has enabled the determination of damage-free protein structures at ambient temperatures and of reaction intermediate species with time resolution on the order of hundreds of femtoseconds. However, currently available XFEL facility X-ray pulse structures waste the majority of continuously injected crystal sample, requiring a large quantity (up to grams) of crystal sample to solve a protein structure. Furthermore, mix-and-inject serial crystallography (MISC) at XFEL facilities requires fast mixing for short (millisecond) reaction time points (𝑡"), and current sample delivery methods have complex fabrication and assembly requirements.

To reduce sample consumption during SFX, a 3D printed T-junction for generating segmented aqueous-in-oil droplets was developed. The device surface properties were characterized both with and without a surface coating for improved droplet generation stability. Additionally, the droplet generation frequency was characterized. The 3D printed device interfaced with gas dynamic virtual nozzles (GDVNs) at the Linac Coherent Light Source (LCLS), and a relationship between the aqueous phase volume and the resulting crystal hit rate was developed. Furthermore, at the European XFEL (EuXFEL) a similar quantity and quality of diffraction data was collected for segmented sample delivery using ~60% less sample volume than continuous injection, and a structure of 3-deoxy-D-manno- octulosonate 8-phosphate synthase (KDO8PS) delivered by segmented injection was solved that revealed new structural details to a resolution of 2.8 Å.

For MISC, a 3D printed hydrodynamic focusing mixer for fast mixing by diffusion was developed to automate device fabrication and simplify device assembly. The mixer was characterized with numerical models and fluorescence microscopy. A variety of devices were developed to reach reaction intermediate time points, 𝑡", on the order of 100 – 103 ms. These devices include 3D printed mixers coupled to glass or 3D printed GDVNs and two designs of mixers with GDVNs integrated into the one device. A 3D printed mixer coupled to a glass GDVN was utilized at LCLS to study the oxidation of cytochrome c oxidase (CcO), and a structure of the CcO Pr intermediate was determined at 𝑡" = 8 s.
ContributorsEchelmeier, Austin (Author) / Ros, Alexandra (Thesis advisor) / Levitus, Marcia (Committee member) / Weierstall, Uwe (Committee member) / Arizona State University (Publisher)
Created2019
157775-Thumbnail Image.png
Description
Exoelectrogenic microorganisms can grow by transferring electrons from their internal metabolism to extracellular substrates in a process known as extracellular electron transfer (EET). This dissertation explores the mechanisms of EET by both chemotrophic and phototrophic organisms and constructs a novel supramolecular structure that can be used as a model for

Exoelectrogenic microorganisms can grow by transferring electrons from their internal metabolism to extracellular substrates in a process known as extracellular electron transfer (EET). This dissertation explores the mechanisms of EET by both chemotrophic and phototrophic organisms and constructs a novel supramolecular structure that can be used as a model for microbial, long-range electron transfer. Geobacter sulfurreducens has been hypothesized to secrete and use riboflavin as a soluble, extracellular redox shuttle in conjunction with multi-heme, outer membrane, c-type cytochromes, but the required proteins and their properties have not been defined. To address the mechanism of extracellular electron transfer by G. sulfurreducens, the first part of this work explores the interaction between an outer membrane, octaheme, c-type cytochrome OmcZs from G. sulfurreducens and riboflavin. Interrogation via multiple physical techniques shows that OmcZs transfers electrons to riboflavin. By analogy to other characterized systems, riboflavin then likely interacts with extracellular acceptors directly. The second part of this work addresses the mechanisms of EET by the model cyanobacterium Synechocystis sp. PCC 6803. It has been hypothesized that Synechocystis employs conductive pili for production of extracellular current. However, the results herein show that a strain that does not have pili produces extracellular photocurrent in a direct electrochemical cell at a level similar to that by wild type cells. Furthermore, conductive atomic force microscopy (AFM) imaging is used to show that pili produced by the wild type organism are not conductive. Thus, an alternative EET mechanism must be operable. In the third part of this work, a supramolecular structure comprised of peptide and cytochromes designed to serve as a model for long-range electron transfer through cytochrome rich environments is described. The c-type cytochromes in this synthetic nanowire retain their redox activity after assembly and have suitable characteristics for long-range electron transfer. Taken together, the results of this dissertation not only inform on natural microbial mechanisms for EET but also provide a starting point to develop novel, synthetic systems.
ContributorsThirumurthy, Miyuki (Author) / Jones, Anne K (Thesis advisor) / Redding, Kevin (Committee member) / Torres, Cesar (Committee member) / Arizona State University (Publisher)
Created2019
157785-Thumbnail Image.png
Description
Quantifying molecular interactions is pivotal for understanding biological processes at molecular scale and for screening drugs. Although various detection technologies have been developed, it is still challenging to quantify the binding kinetics of small molecules because the sensitivities of the mainstream technologies scale down with the size of the molecule.

Quantifying molecular interactions is pivotal for understanding biological processes at molecular scale and for screening drugs. Although various detection technologies have been developed, it is still challenging to quantify the binding kinetics of small molecules because the sensitivities of the mainstream technologies scale down with the size of the molecule. To address this problem, two different optical detection methods, charge sensitive optical detection (CSOD) and virion
ano-oscillators, are developed to measure the binding-induced charge change instead of the mass change, which enables quantification of the binding kinetics for both large and small molecules.

In particular, the nano-oscillator approach provides a unique capability to image individual nanoparticles and measure the size and charge of each nanoparticle simultaneously. This approach is applied to measure one of the smallest biological particles - single protein molecules. By tracking the oscillation of each protein molecule, the size, charge, and mobility are measured in real-time with high precision. This capability also allows to monitor the conformation and charge changes of single protein molecules upon ligand binding. Measuring the size and charge of single proteins opens a new revenue to protein analysis and disease biomarker detection at the single molecule level.

The virion
ano-oscillators and the single protein approach employ a scheme where a particle is tethered to the surface with a polymer molecule. The dynamics of the particle is governed by two important forces: One is entropic force arising from the conformational change of the molecular tether, and the other is solvent damping on the particle and the molecule. The dynamics is studied by varying the type of the tether molecule, size of the particle, and viscosity of the solvent. The findings provide insights into single molecule studies using not only tethered particles, but also other approaches, including force spectroscopy using atomic force microscopy and nanopores.
ContributorsMa, Guangzhong, Ph.D (Author) / Tao, Nongjian (Thesis advisor) / Wang, Shaopeng (Thesis advisor) / Ros, Alexandra (Committee member) / Guo, Jia (Committee member) / Arizona State University (Publisher)
Created2019
Description
Due to analytical limitations, thermodynamic modeling is a lucrative alternative for obtaining metal speciation in chemically complex systems like life. However, such modeling is limited by the lack of equilibrium constant data for metal-complexation reactions, particularly for metal-organic species. These problems were ameliorated estimating these properties from 0-125°C for ~18,000

Due to analytical limitations, thermodynamic modeling is a lucrative alternative for obtaining metal speciation in chemically complex systems like life. However, such modeling is limited by the lack of equilibrium constant data for metal-complexation reactions, particularly for metal-organic species. These problems were ameliorated estimating these properties from 0-125°C for ~18,000 metal complexes of small molecules, proteins and peptides.

The estimates of metal-ligand equilibrium constants at 25°C and 1 bar were made using multiple linear free energy relationships in accordance with the metal-coordinating properties of ligands such as denticity, identity of electron donor group, inductive effects and steric hindrance. Analogous relationships were made to estimated metal-ligand complexation entropy that facilitated calculation of equilibrium constants up to 125°C using the van’t Hoff equation. These estimates were made for over 250 ligands that include carboxylic acids, phenols, inorganic acids, amino acids, peptides and proteins.

The stability constants mentioned above were used to obtain metal speciation in several microbial growth media including past bioavailability studies and compositions listed on the DSMZ website. Speciation calculations were also carried out for several metals in blood plasma and cerebrospinal fluid that include metals present at over micromolar abundance (sodium, potassium, calcium, magnesium, iron, copper and zinc) and metals of therapeutic or toxic potential (like gallium, rhodium and bismuth). Metal speciation was found to be considerably dependent on pH and chelator concentration that can help in the selection of appropriate ligands for gallium & rhodium based anticancer drugs and zinc-based antidiabetics. It was found that methanobactin can considerably alter copper speciation and is therefore a suitable agent for the treatment of Wilson Disease. Additionally, bismuth neurotoxicity was attributed to the low transferrin concentration in cerebrospinal fluid and the predominance of aqueous bismuth trihydroxide. These results demonstrate that metal speciation calculations using thermodynamic modeling can be extremely useful for understanding metal bioavailability in microbes and human bodily fluids.
ContributorsPrasad, Apar (Author) / Shock, Everett (Thesis advisor) / Trovitch, Ryan (Committee member) / Redding, Kevin (Committee member) / Arizona State University (Publisher)
Created2019