Matching Items (2)
Filtering by

Clear all filters

157078-Thumbnail Image.png
Description
A new type of electronics was envisioned, namely edible electronics. Edible electronics are made by Food and Drug Administration (FDA) certified edible materials which can be eaten and digested by human body. Different from implantable electronics, test or treatment using edible electronics doesn’t require operations and perioperative complications.

This dissertation

A new type of electronics was envisioned, namely edible electronics. Edible electronics are made by Food and Drug Administration (FDA) certified edible materials which can be eaten and digested by human body. Different from implantable electronics, test or treatment using edible electronics doesn’t require operations and perioperative complications.

This dissertation bridges the food industry, material sciences, device fabrication, and biomedical engineering by demonstrating edible supercapacitors and electronic components and devices such as pH sensor.

Edible supercapacitors were fabricated using food materials from grocery store. 5 of them were connected in series to power a snake camera. Tests result showed that the current generated by supercapacitor have the ability to kill bacteria. Next more food, processed food and non-toxic level electronic materials were investigated. A “preferred food kit” was created for component fabrication based on the investigation. Some edible electronic components, such as wires, resistor, inductor, etc., were developed and characterized utilizing the preferred food kit. These components make it possible to fabricate edible electronic/device in the future work. Some edible electronic components were integrated into an edible electronic system/device. Then edible pH sensor was introduced and fabricated. This edible pH sensor can be swallowed and test pH of gastric fluid. PH can be read in a phone within seconds after the pH sensor was swallowed. As a side project, an edible double network gel electrolyte was synthesized for the edible supercapacitor.
ContributorsXu, Wenwen (Author) / Jiang, Hanqing (Thesis advisor) / Dai, Lenore (Committee member) / Green, Matthew (Committee member) / Mu, Bin (Committee member) / Yu, Hongbin (Committee member) / Arizona State University (Publisher)
Created2019
154917-Thumbnail Image.png
Description
The worldwide supply of potable fresh water is ever decreasing. While 2.5% of Earth's water is fresh, only 1% is accessible. Of this water, the World Health Organization estimates that only one-third can be used to meet our daily needs while the other two-thirds are unusable due to contamination. As

The worldwide supply of potable fresh water is ever decreasing. While 2.5% of Earth's water is fresh, only 1% is accessible. Of this water, the World Health Organization estimates that only one-third can be used to meet our daily needs while the other two-thirds are unusable due to contamination. As the world population continues to grow and climate change reduces water security, we must consider not only solutions, but evaluate the perceptions and reactions of individuals in order to successfully implement such solutions. To that end, the goal of this dissertation is to explore human attitudes, beliefs, and behaviors around water issues by conducting cross-cultural comparisons of (1) water risks and solutions, (2) wastewater knowledge and acceptance, and (3) motivators for willingness to use treated wastewater. Previous research in these domains has primarily focused on a single site or national context. While such research is valuable for establishing how and why cultural context matters, comparative studies are also needed to help link perceptions at local and global scales. Adopting an interdisciplinary approach grounded in anthropological methods and theory, I use interview data collected in a range of international sites as part of the Arizona State University's Global Ethnohydrology Study. With funding from National Science Foundation grants to the Decision Center for a Desert City (DCDC) and the Central Arizona-Phoenix Long-Term Ecological Research project (CAP LTER), this dissertation explores cross-cultural perceptions of water threats and management strategies, specifically wastewater reclamation and reuse, in order to make recommendations for policy makers and water managers.
ContributorsStotts, Rhian (Author) / Wutich, Amber (Thesis advisor) / BurnSilver, Shauna (Committee member) / Grossman, Gary (Committee member) / White, Dave (Committee member) / Arizona State University (Publisher)
Created2016