Matching Items (55)
Filtering by

Clear all filters

168313-Thumbnail Image.png
Description
The fast pace of global urbanization makes cities the hotspots of population density and anthropogenic activities, leading to intensive emissions of heat and carbon dioxide (CO2), a primary greenhouse gas. Urban climate scientists have been actively seeking effective mitigation strategies over the past decades, aiming to improve the environmental quality

The fast pace of global urbanization makes cities the hotspots of population density and anthropogenic activities, leading to intensive emissions of heat and carbon dioxide (CO2), a primary greenhouse gas. Urban climate scientists have been actively seeking effective mitigation strategies over the past decades, aiming to improve the environmental quality for urban dwellers. Prior studies have identified the role of urban green spaces in the relief of urban heat stress. Yet little effort was devoted to quantify their contribution to local and regional CO2 budget. In fact, urban biogenic CO2 fluxes from photosynthesis and respiration are influenced by the microclimate in the built environment and are sensitive to anthropogenic disturbance. The high complexity of the urban ecosystem leads to an outstanding challenge for numerical urban models to disentangling and quantifying the interplay between heat and carbon dynamics.This dissertation aims to advance the simulation of thermal and carbon dynamics in urban land surface models, and to investigate the role of urban greening practices and urban system design in mitigating heat and CO2 emissions. The biogenic CO2 exchange in cities is parameterized by incorporating plant physiological functions into an advanced single-layer urban canopy model in the built environment. The simulation result replicates the microclimate and CO2 flux patterns measured from an eddy covariance system over a residential neighborhood in Phoenix, Arizona with satisfactory accuracy. Moreover, the model decomposes the total CO2 flux from observation and identifies the significant CO2 efflux from soil respiration. The model is then applied to quantify the impact of urban greening practices on heat and biogenic CO2 exchange over designed scenarios. The result shows the use of urban greenery is effective in mitigating both urban heat and carbon emissions, providing environmental co-benefit in cities. Furthermore, to seek the optimal urban system design in terms of thermal comfort and CO2 reduction, a multi-objective optimization algorithm is applied to the machine learning surrogates of the physical urban land surface model. There are manifest trade-offs among ameliorating diverse urban environmental indicators despite the co-benefit from urban greening. The findings of this dissertation, along with its implications on urban planning and landscaping management, would promote sustainable urban development strategies for achieving optimal environmental quality for policy makers, urban residents, and practitioners.
ContributorsLi, Peiyuan (Author) / Wang, Zhihua (Thesis advisor) / Vivoni, Enrique (Committee member) / Huang, Huei-Ping (Committee member) / Myint, Soe (Committee member) / Xu, Tianfang (Committee member) / Arizona State University (Publisher)
Created2021
187669-Thumbnail Image.png
Description
Advancements to a dual scale Large Eddy Simulation (LES) modeling approach for immiscible turbulent phase interfaces are presented. In the dual scale LES approach, a high resolution auxiliary grid, used to capture a fully resolved interface geometry realization, is linked to an LES grid that solves the filtered Navier-Stokes equations.

Advancements to a dual scale Large Eddy Simulation (LES) modeling approach for immiscible turbulent phase interfaces are presented. In the dual scale LES approach, a high resolution auxiliary grid, used to capture a fully resolved interface geometry realization, is linked to an LES grid that solves the filtered Navier-Stokes equations. Exact closure of the sub-filter interface terms is provided by explicitly filtering the fully resolved quantities from the auxiliary grid. Reconstructing a fully resolved velocity field to advance the phase interface requires modeling several sub-filter effects, including shear and accelerational instabilities and phase change. Two sub-filter models were developed to generate these sub-filter hydrodynamic instabilities: an Orr-Sommerfeld model and a Volume-of-Fluid (VoF) vortex sheet method. The Orr-Sommerfeld sub-filter model was found to be incompatible with the dual scale approach, since it is unable to generate interface rollup and a process to separate filtered and sub-filter scales could not be established. A novel VoF vortex sheet method was therefore proposed, since prior vortex methods have demonstrated interface rollup and following the LES methodology, the vortex sheet strength could be decomposed into its filtered and sub-filter components. In the development of the VoF vortex sheet method, it was tested with a variety of classical hydrodynamic instability problems, compared against prior work and linear theory, and verified using Direct Numerical Simulations (DNS). An LES consistent approach to coupling the VoF vortex sheet with the LES filtered equations is presented and compared against DNS. Finally, a sub-filter phase change model is proposed and assessed in the dual scale LES framework with an evaporating interface subjected to decaying homogeneous isotropic turbulence. Results are compared against DNS and the interplay between surface tension forces and evaporation are discussed.
ContributorsGoodrich, Austin Chase (Author) / Herrmann, Marcus (Thesis advisor) / Dahm, Werner (Committee member) / Kim, Jeonglae (Committee member) / Huang, Huei-Ping (Committee member) / Kostelich, Eric (Committee member) / Arizona State University (Publisher)
Created2023
187845-Thumbnail Image.png
Description
The hydrologic cycle in drylands is complex with large spatiotemporal variationsacross scales and is particularly vulnerable to changes in climate and land cover. To address the challenges posed by hydrologic changes, a synergistic approach that combines numerical models, ground and remotely sensed observations, and data analysis is crucial. This dissertation uses innovative detection

The hydrologic cycle in drylands is complex with large spatiotemporal variationsacross scales and is particularly vulnerable to changes in climate and land cover. To address the challenges posed by hydrologic changes, a synergistic approach that combines numerical models, ground and remotely sensed observations, and data analysis is crucial. This dissertation uses innovative detection and modeling techniques to assess key hydrologic variables in drylands, including irrigated water use, streamflow, and snowpack conditions, answering following research questions that also have broad societal implications: (1) What are the individual and combined effects of future climate and land use change on irrigation water use (IWU) in the Phoenix Metropolitan Area (PMA)?; (2) How can temporal changes in streamflow and the impacts of flash flooding be detected in dryland rivers?; and (3) What are the impacts of rainfall-snow partitioning on future snowpack and streamflow in the Colorado River Basin (CRB)? Firstly, I conducted a scenario modeling using the Variable Infiltration Capacity (VIC) model under future climate and land use change scenarios. Results showed that future IWU will change from -0.5% to +6.8% in the far future (2071-2100) relative to the historical period (1981-2010). Secondly, I employed CubeSat imagery to map streamflow presence in the Hassayampa River of Arizona, finding that the imaging capacity of CubeSats enabled the detection of ephemeral flow events using the surface reflectance of the near-infrared (NIR) band. Results showed that 12% of reaches were classified as intermittent, with the remaining as ephemeral. Finally, I implemented a physically-based rainfall-snow partitioning scheme in the VIC model that estimates snowfall fraction from the wet-bulb temperature using a sigmoid function. The new scheme predicts more significant declines in snowfall (-8 to -11%) and streamflow (-14 to -27%) by the end of the 21st century over the CRB, relative to historical conditions. Overall, this dissertation demonstrates how innovative technologies can enhance the understanding of dryland hydrologic changes and inform decision-making of water resources management. The findings offer important insights for policymakers, water managers, and researchers who seek to ensure water resources sustainability under the effects of climate and land use change.
ContributorsWang, Zhaocheng (Author) / Vivoni, Enrique R (Thesis advisor) / White, Dave D (Committee member) / Mascaro, Giuseppe (Committee member) / Huang, Huei-Ping (Committee member) / Wang, Zhihua (Committee member) / Arizona State University (Publisher)
Created2023
193358-Thumbnail Image.png
Description
This dissertation investigates the complex dynamics of semi-dilute inertial particles suspended in vortices using the Eulerian-Lagrangian method. The study explores the modulation of flow induced by inertial particles, focusing on the characteristics of a single vortex, instability analysis within particle-laden flows, and the merging process of co-rotating vortices. Simulations reveal

This dissertation investigates the complex dynamics of semi-dilute inertial particles suspended in vortices using the Eulerian-Lagrangian method. The study explores the modulation of flow induced by inertial particles, focusing on the characteristics of a single vortex, instability analysis within particle-laden flows, and the merging process of co-rotating vortices. Simulations reveal a preferential concentration mechanism, where inertial particles cluster around a void fraction bubble, accelerating the decay of the vortex tube. Small-scale clusters, arising from particle-trajectory crossings, induce significant gradients in the fluid vorticity field, contributing to rapid vortex breakdown. Within a specific Stokes number range, increased particle inertia results in faster vortex decay and stronger inhomogeneity in the particle phase. The instability mechanism in particle-laden flows is explored using a Rankine vortex model. Two-way coupling triggers azimuthal perturbations, leading to the breakdown of the vortex structure. Linear Stability Analysis and Two-Fluid modeling demonstrate that the dusty vortex flow exhibits unstable modes, with growth rates increasing with wavenumber. Eulerian-Lagrangian simulations validate these results, showing excellent agreement between computed and predicted growth rates. The dissertation also delves into the co-rotating vortex merger in a semi-dilute dusty flow. For weak inertial effects, merger experiences a delay compared to particle-free vortices. Under moderate inertial conditions, the merger process exhibits repulsion, increased separation, and eventual convective merger stages. Highly inertial particles stretch the vortex core, initiating a merger with an outcome of a particle-free vortex core surrounded by a halo of concentrated particles. In conclusion, the feedback force from the dispersed phase induces instability and significantly influences the dynamics of vortices in particle-laden flows. The findings contribute to a deeper understanding of the intricate interactions between inertial particles and vortical structures.
ContributorsShuai, Shuai (Author) / Kasbaoui, Mohamed Houssem (Thesis advisor) / Herrmann, Marcus (Committee member) / Peet, Yulia (Committee member) / Huang, Huei-Ping (Committee member) / Wang, Zhihua (Committee member) / Arizona State University (Publisher)
Created2024
157354-Thumbnail Image.png
Description
The residential building sector accounts for more than 26% of the global energy consumption and 17% of global CO2 emissions. Due to the low cost of electricity in Kuwait and increase of population, Kuwaiti electricity consumption tripled during the past 30 years and is expected to increase by 20% by

The residential building sector accounts for more than 26% of the global energy consumption and 17% of global CO2 emissions. Due to the low cost of electricity in Kuwait and increase of population, Kuwaiti electricity consumption tripled during the past 30 years and is expected to increase by 20% by 2027. In this dissertation, a framework is developed to assess energy savings techniques to help policy-makers make educated decisions. The Kuwait residential energy outlook is studied by modeling the baseline energy consumption and the diffusion of energy conservation measures (ECMs) to identify the impacts on household energy consumption and CO2 emissions.



The energy resources and power generation in Kuwait were studied. The characteristics of the residential buildings along with energy codes of practice were investigated and four building archetypes were developed. Moreover, a baseline of end-use electricity consumption and demand was developed. Furthermore, the baseline energy consumption and demand were projected till 2040. It was found that by 2040, energy consumption would double with most of the usage being from AC. While with lighting, there is a negligible increase in consumption due to a projected shift towards more efficient lighting. Peak demand loads are expected to increase by an average growth rate of 2.9% per year. Moreover, the diffusion of different ECMs in the residential sector was modeled through four diffusion scenarios to estimate ECM adoption rates. ECMs’ impact on CO2 emissions and energy consumption of residential buildings in Kuwait was evaluated and the cost of conserved energy (CCE) and annual energy savings for each measure was calculated. AC ECMs exhibited the highest cumulative savings, whereas lighting ECMs showed an immediate energy impact. None of the ECMs in the study were cost effective due to the high subsidy rate (95%), therefore, the impact of ECMs at different subsidy and rebate rates was studied. At 75% subsidized utility price and 40% rebate only on appliances, most of ECMs will be cost effective with high energy savings. Moreover, by imposing charges of $35/ton of CO2, most ECMs will be cost effective.
ContributorsAlajmi, Turki (Author) / Phelan, Patrick E (Thesis advisor) / Kaloush, Kamil (Committee member) / Huang, Huei-Ping (Committee member) / Wang, Liping (Committee member) / Hajiah, Ali (Committee member) / Arizona State University (Publisher)
Created2019
157173-Thumbnail Image.png
Description
Understanding and predicting climate changes at the urban scale have been an important yet challenging problem in environmental engineering. The lack of reliable long-term observations at the urban scale makes it difficult to even assess past climate changes. Numerical modeling plays an important role in filling the gap of observation

Understanding and predicting climate changes at the urban scale have been an important yet challenging problem in environmental engineering. The lack of reliable long-term observations at the urban scale makes it difficult to even assess past climate changes. Numerical modeling plays an important role in filling the gap of observation and predicting future changes. Numerical studies on the climatic effect of desert urbanization have focused on basic meteorological fields such as temperature and wind. For desert cities, urban expansion can lead to substantial changes in the local production of wind-blown dust, which have implications for air quality and public health. This study expands the existing framework of numerical simulation for desert urbanization to include the computation of dust generation related to urban land-use changes. This is accomplished by connecting a suite of numerical models, including a meso-scale meteorological model, a land-surface model, an urban canopy model, and a turbulence model, to produce the key parameters that control the surface fluxes of wind-blown dust. Those models generate the near-surface turbulence intensity, soil moisture, and land-surface properties, which are used to determine the dust fluxes from a set of laboratory-based empirical formulas. This framework is applied to a series of simulations for the desert city of Erbil across a period of rapid urbanization. The changes in surface dust fluxes associated with urbanization are quantified. An analysis of the model output further reveals the dependence of surface dust fluxes on local meteorological conditions. Future applications of the models to environmental prediction are discussed.
ContributorsTahir, Sherzad Tahseen (Author) / Huang, Huei-Ping (Thesis advisor) / Phelan, Patrick (Committee member) / Herrmann, Marcus (Committee member) / Chen, Kangping (Committee member) / Clarke, Amanda (Committee member) / Arizona State University (Publisher)
Created2019
157560-Thumbnail Image.png
Description
This dissertation introduces FARCOM (Fortran Adaptive Refiner for Cartesian Orthogonal Meshes), a new general library for adaptive mesh refinement (AMR) based on an unstructured hexahedral mesh framework. As a result of the underlying unstructured formulation, the refinement and coarsening operators of the library operate on a single-cell basis and perform

This dissertation introduces FARCOM (Fortran Adaptive Refiner for Cartesian Orthogonal Meshes), a new general library for adaptive mesh refinement (AMR) based on an unstructured hexahedral mesh framework. As a result of the underlying unstructured formulation, the refinement and coarsening operators of the library operate on a single-cell basis and perform in-situ replacement of old mesh elements. This approach allows for h-refinement without the memory and computational expense of calculating masked coarse grid cells, as is done in traditional patch-based AMR approaches, and enables unstructured flow solvers to have access to the automated domain generation capabilities usually only found in tree AMR formulations.

The library is written to let the user determine where to refine and coarsen through custom refinement selector functions for static mesh generation and dynamic mesh refinement, and can handle smooth fields (such as level sets) or localized markers (e.g. density gradients). The library was parallelized with the use of the Zoltan graph-partitioning library, which provides interfaces to both a graph partitioner (PT-Scotch) and a partitioner based on Hilbert space-filling curves. The partitioned adjacency graph, mesh data, and solution variable data is then packed and distributed across all MPI ranks in the simulation, which then regenerate the mesh, generate domain decomposition ghost cells, and create communication caches.

Scalability runs were performed using a Leveque wave propagation scheme for solving the Euler equations. The results of simulations on up to 1536 cores indicate that the parallel performance is highly dependent on the graph partitioner being used, and differences between the partitioners were analyzed. FARCOM is found to have better performance if each MPI rank has more than 60,000 cells.
ContributorsBallesteros, Carlos Alberto (Author) / Herrmann, Marcus (Thesis advisor) / Adrian, Ronald (Committee member) / Chen, Kangping (Committee member) / Huang, Huei-Ping (Committee member) / Lopez, Juan (Committee member) / Arizona State University (Publisher)
Created2019
157651-Thumbnail Image.png
Description
This dissertation develops a second order accurate approximation to the magnetic resonance (MR) signal model used in the PARSE (Parameter Assessment by Retrieval from Single Encoding) method to recover information about the reciprocal of the spin-spin relaxation time function (R2*) and frequency offset function (w) in addition to the typical

This dissertation develops a second order accurate approximation to the magnetic resonance (MR) signal model used in the PARSE (Parameter Assessment by Retrieval from Single Encoding) method to recover information about the reciprocal of the spin-spin relaxation time function (R2*) and frequency offset function (w) in addition to the typical steady-state transverse magnetization (M) from single-shot magnetic resonance imaging (MRI) scans. Sparse regularization on an approximation to the edge map is used to solve the associated inverse problem. Several studies are carried out for both one- and two-dimensional test problems, including comparisons to the first order approximation method, as well as the first order approximation method with joint sparsity across multiple time windows enforced. The second order accurate model provides increased accuracy while reducing the amount of data required to reconstruct an image when compared to piecewise constant in time models. A key component of the proposed technique is the use of fast transforms for the forward evaluation. It is determined that the second order model is capable of providing accurate single-shot MRI reconstructions, but requires an adequate coverage of k-space to do so. Alternative data sampling schemes are investigated in an attempt to improve reconstruction with single-shot data, as current trajectories do not provide ideal k-space coverage for the proposed method.
ContributorsJesse, Aaron Mitchel (Author) / Platte, Rodrigo (Thesis advisor) / Gelb, Anne (Committee member) / Kostelich, Eric (Committee member) / Mittelmann, Hans (Committee member) / Moustaoui, Mohamed (Committee member) / Arizona State University (Publisher)
Created2019
156949-Thumbnail Image.png
Description
Laser radars or lidar’s have been used extensively to remotely study winds within the atmospheric boundary layer and atmospheric transport. Lidar sensors have become an important tool within the meteorology and the wind energy community. For example, Doppler lidars are used frequently in wind resource assessment, wind turbine control as

Laser radars or lidar’s have been used extensively to remotely study winds within the atmospheric boundary layer and atmospheric transport. Lidar sensors have become an important tool within the meteorology and the wind energy community. For example, Doppler lidars are used frequently in wind resource assessment, wind turbine control as well as in atmospheric science research. A Time of Flight based (ToF) direct detection lidar sensor is used in vehicles to navigate through complex and dynamic environments autonomously. These optical sensors are used to map the environment around the car accurately for perception and localization tasks that help achieve complete autonomy.

This thesis begins with a detailed discussion on the fundamentals of a Doppler lidar system. The laser signal flow path to and from the target, the optics of the system and the core signal processing algorithms used to extract velocity information, were studied to get closer to the hardware of a Doppler lidar sensor. A Doppler lidar simulator was built to study the existing signal processing algorithms to detect and estimate doppler frequency, and radial velocity information. Understanding the sensor and its processing at the hardware level is necessary to develop new algorithms to detect and track specific flow structures in the atmosphere. For example, the aircraft vortices have been a topic of extensive research and doppler lidars have proved to be a valuable sensor to detect and track these coherent flow structures. Using the lidar simulator a physics based doppler lidar vortex algorithm is tested on simulated data to track a pair of counter rotating aircraft vortices.



At a system level the major components of a time of flight lidar is very similar to a Doppler lidar. The fundamental physics of operation is however different. While doppler lidars are used for radial velocity measurement, ToF sensors as the name suggests provides precise depth measurements by measuring time of flight between the transmitted and the received pulses. The second part of this dissertation begins to explore the details of ToF lidar system. A system level design, to build a ToF direct detection lidar system is presented. Different lidar sensor modalities that are currently used with sensors in the market today for automotive applications were evaluated and a 2D MEMS based scanning lidar system was designed using off-the shelf components.

Finally, a range of experiments and tests were completed to evaluate the performance of each sub-component of the lidar sensor prototype. A major portion of the testing was done to align the optics of the system and to ensure maximum field of view overlap for the bi-static laser sensor. As a laser range finder, the system demonstrated capabilities to detect hard targets as far as 32 meters. Time to digital converter (TDC) and an analog to digital converter (ADC) was used for providing accurate timing solutions for the lidar prototype. A Matlab lidar model was built and used to perform trade-off studies that helped choosing components to suit the sensor design specifications.

The size, weight and cost of these lidar sensors are still very high and thus making it harder for automotive manufacturers to integrate these sensors into their vehicles. Ongoing research in this field is determined to find a solution that guarantees very high performance in real time and lower its cost over the next decade as components get cheaper and can be seamlessly integrated with cars to improve on-road safety.
ContributorsBhaskaran, Sreevatsan (Author) / Calhoun, Ronald J (Thesis advisor) / Dahm, Werner (Committee member) / Huang, Huei-Ping (Committee member) / Chen, Kang Pin (Committee member) / Choukulkar, Aditya (Committee member) / Arizona State University (Publisher)
Created2018
156957-Thumbnail Image.png
Description
Two urban flows are analyzed, one concerned with pollutant transport in a Phoenix, Arizona neighborhood and the other with windshear detection at the Hong Kong International Airport (HKIA).

Lagrangian measures, identified with finite-time Lyapunov exponents, are first used to characterize transport patterns of inertial pollutant particles. Motivated by actual events the

Two urban flows are analyzed, one concerned with pollutant transport in a Phoenix, Arizona neighborhood and the other with windshear detection at the Hong Kong International Airport (HKIA).

Lagrangian measures, identified with finite-time Lyapunov exponents, are first used to characterize transport patterns of inertial pollutant particles. Motivated by actual events the focus is on flows in realistic urban geometry. Both deterministic and stochastic transport patterns are identified, as inertial Lagrangian coherent structures. For the deterministic case, the organizing structures are well defined and are extracted at different hours of a day to reveal the variability of coherent patterns. For the stochastic case, a random displacement model for fluid particles is formulated, and used to derive the governing equations for inertial particles to examine the change in organizing structures due to ``zeroth-order'' random noise. It is found that, (1) the Langevin equation for inertial particles can be reduced to a random displacement model; (2) using random noise based on inhomogeneous turbulence, whose diffusivity is derived from $k$-$\epsilon$ models, major coherent structures survive to organize local flow patterns and weaker structures are smoothed out due to random motion.

A study of three-dimensional Lagrangian coherent structures (LCS) near HKIA is then presented and related to previous developments of two-dimensional (2D) LCS analyses in detecting windshear experienced by landing aircraft. The LCS are contrasted among three independent models and against 2D coherent Doppler light detection and ranging (LIDAR) data. Addition of the velocity information perpendicular to the lidar scanning cone helps solidify flow structures inferred from previous studies; contrast among models reveals the intramodel variability; and comparison with flight data evaluates the performance among models in terms of Lagrangian analyses. It is found that, while the three models and the LIDAR do recover similar features of the windshear experienced by a landing aircraft (along the landing trajectory), their Lagrangian signatures over the entire domain are quite different - a portion of each numerical model captures certain features resembling those LCS extracted from independent 2D LIDAR analyses based on observations. Overall, it was found that the Weather Research and Forecast (WRF) model provides the best agreement with the LIDAR data.

Finally, the three-dimensional variational (3DVAR) data assimilation scheme in WRF is used to incorporate the LIDAR line of sight velocity observations into the WRF model forecast at HKIA. Using two different days as test cases, it is found that the LIDAR data can be successfully and consistently assimilated into WRF. Using the updated model forecast LCS are extracted along the LIDAR scanning cone and compare to onboard flight data. It is found that the LCS generated from the updated WRF forecasts are generally better correlated with the windshear experienced by landing aircraft as compared to the LIDAR extracted LCS alone, which suggests that such a data assimilation scheme could be used for the prediction of windshear events.
ContributorsKnutson, Brent (Author) / Tang, Wenbo (Thesis advisor) / Calhoun, Ronald (Committee member) / Huang, Huei-Ping (Committee member) / Kostelich, Eric (Committee member) / Mahalov, Alex (Committee member) / Arizona State University (Publisher)
Created2018