Matching Items (12)
Filtering by

Clear all filters

158113-Thumbnail Image.png
Description
The Chinese Construction Industry has grown to be one of the largest construction markets in the world within the last 10 years. The size of the Chinese Construction Industry is on par with many developed nations, despite it being a developing country. Despite its rapid growth, the productivity and profitability

The Chinese Construction Industry has grown to be one of the largest construction markets in the world within the last 10 years. The size of the Chinese Construction Industry is on par with many developed nations, despite it being a developing country. Despite its rapid growth, the productivity and profitability of the Chinese Construction Industry is low compared to similar sized construction industries (United States, United Kingdom, etc.). In addition to the low efficiency of the Chinese Construction Industry, there is minimal documentation available showing the performance of the Chinese Construction Industry (projects completed on time, on budget, and customer satisfaction ratings).

The purpose of this research is to investigate potential solutions that could address the poor efficiency and performance of the Chinese Construction Industry. This research is divided into three phases; first, a literature review to identify countries that have similar construction industries to the Chinese Construction Industry. The second phase is to compare the risks and identify solutions that are proposed to increase the performance of similar construction industries and the Chinese Construction Industry. The third phase is to create a survey from the literature-based information to validate the concepts with the Chinese Construction Industry professionals and stakeholders.
ContributorsChen, Yutian (Author) / Chong, Oswald (Thesis advisor) / Kashiwagi, Dean T. (Committee member) / Badger, Willliam (Committee member) / Arizona State University (Publisher)
Created2020
171582-Thumbnail Image.png
Description
High throughput transcriptome data analysis like Single-cell Ribonucleic Acid sequencing (scRNA-seq) and Circular Ribonucleic Acid (circRNA) data have made significant breakthroughs, especially in cancer genomics. Analysis of transcriptome time series data is core in identifying time point(s) where drastic changes in gene transcription are associated with homeostatic to non-homeostatic cellular

High throughput transcriptome data analysis like Single-cell Ribonucleic Acid sequencing (scRNA-seq) and Circular Ribonucleic Acid (circRNA) data have made significant breakthroughs, especially in cancer genomics. Analysis of transcriptome time series data is core in identifying time point(s) where drastic changes in gene transcription are associated with homeostatic to non-homeostatic cellular transition (tipping points). In Chapter 2 of this dissertation, I present a novel cell-type specific and co-expression-based tipping point detection method to identify target gene (TG) versus transcription factor (TF) pairs whose differential co-expression across time points drive biological changes in different cell types and the time point when these changes are observed. This method was applied to scRNA-seq data sets from a SARS-CoV-2 study (18 time points), a human cerebellum development study (9 time points), and a lung injury study (18 time points). Similarly, leveraging transcriptome data across treatment time points, I developed methodologies to identify treatment-induced and cell-type specific differentially co-expressed pairs (DCEPs). In part one of Chapter 3, I presented a pipeline that used a series of statistical tests to detect DCEPs. This method was applied to scRNA-seq data of patients with non-small cell lung cancer (NSCLC) sequenced across cancer treatment times. However, this pipeline does not account for correlations among multiple single cells from the same sample and correlations among multiple samples from the same patient. In Part 2 of Chapter 3, I presented a solution to this problem using a mixed-effect model. In Chapter 4, I present a summary of my work that focused on the cross-species analysis of circRNA transcriptome time series data. I compared circRNA profiles in neonatal pig and mouse hearts, identified orthologous circRNAs, and discussed regulation mechanisms of cardiomyocyte proliferation and myocardial regeneration conserved between mouse and pig at different time points.
ContributorsNyarige, Verah Mocheche (Author) / Liu, Li (Thesis advisor) / Wang, Junwen (Thesis advisor) / Dinu, Valentin (Committee member) / Arizona State University (Publisher)
Created2022
171902-Thumbnail Image.png
Description
Beta-Amyloid(Aβ) plaques and tau protein tangles in the brain are now widely recognized as the defining hallmarks of Alzheimer’s disease (AD), followed by structural atrophy detectable on brain magnetic resonance imaging (MRI) scans. However, current methods to detect Aβ/tau pathology are either invasive (lumbar puncture) or quite costly and not

Beta-Amyloid(Aβ) plaques and tau protein tangles in the brain are now widely recognized as the defining hallmarks of Alzheimer’s disease (AD), followed by structural atrophy detectable on brain magnetic resonance imaging (MRI) scans. However, current methods to detect Aβ/tau pathology are either invasive (lumbar puncture) or quite costly and not widely available (positron emission tomography (PET)). And one of the particular neurodegenerative regions is the hippocampus to which the influence of Aβ/tau on has been one of the research projects focuses in the AD pathophysiological progress. In this dissertation, I proposed three novel machine learning and statistical models to examine subtle aspects of the hippocampal morphometry from MRI that are associated with Aβ /tau burden in the brain, measured using PET images. The first model is a novel unsupervised feature reduction model to generate a low-dimensional representation of hippocampal morphometry for each individual subject, which has superior performance in predicting Aβ/tau burden in the brain. The second one is an efficient federated group lasso model to identify the hippocampal subregions where atrophy is strongly associated with abnormal Aβ/Tau. The last one is a federated model for imaging genetics, which can identify genetic and transcriptomic influences on hippocampal morphometry. Finally, I stated the results of these three models that have been published or submitted to peer-reviewed conferences and journals.
ContributorsWu, Jianfeng (Author) / Wang, Yalin (Thesis advisor) / Li, Baoxin (Committee member) / Liang, Jianming (Committee member) / Wang, Junwen (Committee member) / Wu, Teresa (Committee member) / Arizona State University (Publisher)
Created2022
193014-Thumbnail Image.png
Description
The consequences of failures from large-diameter water pipelines can be severe. Results can include significant property damage, damage to adjacent infrastructure such as roads and bridges resulting in transportation delays or shutdowns, adjacent structural damage to buildings resulting in loss of business, service disruption to a significant number of

The consequences of failures from large-diameter water pipelines can be severe. Results can include significant property damage, damage to adjacent infrastructure such as roads and bridges resulting in transportation delays or shutdowns, adjacent structural damage to buildings resulting in loss of business, service disruption to a significant number of customers, loss of water, costly emergency repairs, and even loss of life. The American Water Works Association’s (AWWA) 2020 “State of the Water Industry” report states the top issue facing the water industry since 2016 is aging infrastructure, with the second being financing for improvements. The industry must find innovative ways to extend asset life and reduce maintenance expenditures. While are many different assets comprise the drinking water industry, pipelines are a major component and often neglected because they are typically buried. Reliability Centered Maintenance (RCM) is a process used to determine the most effective maintenance strategy for an asset, with the ultimate goal being to establish the required function of the asset with the required reliability at the lowest operations and maintenance costs. The RCM philosophy considers Preventive Maintenance, Predictive Maintenance, Condition Based Monitoring, Reactive Maintenance, and Proactive Maintenance techniques in an integrated manner to increase the probability an asset will perform its designed function throughout its design life with minimal maintenance. In addition to determining maintenance tasks, the timely performance of those tasks is crucial. If performed too late an asset may fail; if performed too early, resources that may be used better elsewhere are expended. Utility agencies can save time and money by using RCM analysis for their drinking water infrastructure. This dissertation reviews industries using RCM, discusses the benefits of an RCM analysis, and goes through a case study of an RCM at a large aqueduct in the United States. The dissertation further discusses the consequence of failure of large diameter water pipelines and proposes a regression model to help agencies determine the optimum time to perform maintenance tasks on large diameter prestressed concrete pipelines using RCM analysis.
ContributorsGeisbush, James R (Author) / Ariaratnam, Samuel T (Thesis advisor) / Grau, David (Committee member) / Chong, Oswald (Committee member) / Arizona State University (Publisher)
Created2024
156707-Thumbnail Image.png
Description
The United States building sector was the most significant carbon emission contributor (over 40%). The United States government is trying to decrease carbon emissions by enacting policies, but emissions increased by approximately 7 percent in the U.S. between 1990 and 2013. To reduce emissions, investigating the factors affecting carbon emissions

The United States building sector was the most significant carbon emission contributor (over 40%). The United States government is trying to decrease carbon emissions by enacting policies, but emissions increased by approximately 7 percent in the U.S. between 1990 and 2013. To reduce emissions, investigating the factors affecting carbon emissions should be a priority. Therefore, in this dissertation, this research examine the relationship between carbon emissions and the factors affecting them from macro and micro perspectives. From a macroscopic perspective, the relationship between carbon dioxide, energy resource consumption, energy prices, GDP (gross domestic product), waste generation, and recycling waste generation in the building and waste sectors has been verified. From a microscopic perspective, the impact of non-permanent electric appliances and stationary and non-stationary occupancy has been investigated. To verify the relationships, various kinds of statistical and data mining techniques were applied, such as the Granger causality test, linear and logarithmic correlation, and regression method. The results show that natural gas and electricity prices are higher than others, as coal impacts their consumption, and electricity and coal consumption were found to cause significant carbon emissions. Also, waste generation and recycling significantly increase and decrease emissions from the waste sector, respectively. Moreover, non-permanent appliances such as desktop computers and monitors consume a lot of electricity, and significant energy saving potential has been shown. Lastly, a linear relationship exists between buildings’ electricity use and total occupancy, but no significant relationship exists between occupancy and thermal loads, such as cooling and heating loads. These findings will potentially provide policymakers with a better understanding of and insights into carbon emission manipulation in the building sector.
ContributorsLee, Seungtaek (Author) / Chong, Oswald (Thesis advisor) / Sullivan, Kenneth (Committee member) / Tang, Pingbo (Committee member) / Arizona State University (Publisher)
Created2018
153250-Thumbnail Image.png
Description
As a developing nation, China is currently faced with the challenge of providing

safe, reliable and adequate energy resources to the county's growing urban areas as well as to its expanding rural populations. To meet this demand, the country has initiated massive construction projects to expand its national energy infrastructure, particularly

As a developing nation, China is currently faced with the challenge of providing

safe, reliable and adequate energy resources to the county's growing urban areas as well as to its expanding rural populations. To meet this demand, the country has initiated massive construction projects to expand its national energy infrastructure, particularly in the form of natural gas pipeline. The most notable of these projects is the ongoing West-East Gas Pipeline Project. This project is currently in its third phase, which will supply clean and efficient natural gas to nearly sixty million users located in the densely populated Yangtze River Delta.

Trenchless Technologies, in particular the construction method of Horizontal

Directional Drilling (HDD), have played a critical role in executing this project by

providing economical, practical and environmentally responsible ways to install buried pipeline systems. HDD has proven to be the most popular method selected to overcome challenges along the path of the pipeline, which include mountainous terrain, extensive farmland and numerous bodies of water. The Yangtze River, among other large-scale water bodies, have proven to be the most difficult obstacle for the pipeline installation as it widens and changes course numerous times along its path to the East China Sea. The purpose of this study is to examine those practices being used in China in order to compare those to those long used practices in the North American in order to understand the advantages of Chinese advancements.

Developing countries would benefit from the Chinese advancements for large-scale HDD installation. In developed areas, such as North America, studying Chinese execution may allow for new ideas to help to improve long established methods. These factors combined further solidify China's role as the global leader in trenchless technology methods and provide the opportunity for Chinese HDD contractors to contribute to the world's knowledge for best practices of the Horizontal Directional Drilling method.
ContributorsCarlin, Maureen Cassin (Author) / Ariaratnam, Samuel T (Thesis advisor) / Chong, Oswald (Committee member) / Bearup, Wylie (Committee member) / Arizona State University (Publisher)
Created2014
155683-Thumbnail Image.png
Description
The solar energy sector has been growing rapidly over the past decade. Growth in renewable electricity generation using photovoltaic (PV) systems is accompanied by an increased awareness of the fault conditions developing during the operational lifetime of these systems. While the annual energy losses caused by faults in PV systems

The solar energy sector has been growing rapidly over the past decade. Growth in renewable electricity generation using photovoltaic (PV) systems is accompanied by an increased awareness of the fault conditions developing during the operational lifetime of these systems. While the annual energy losses caused by faults in PV systems could reach up to 18.9% of their total capacity, emerging technologies and models are driving for greater efficiency to assure the reliability of a product under its actual application. The objectives of this dissertation consist of (1) reviewing the state of the art and practice of prognostics and health management for the Direct Current (DC) side of photovoltaic systems; (2) assessing the corrosion of the driven posts supporting PV structures in utility scale plants; and (3) assessing the probabilistic risk associated with the failure of polymeric materials that are used in tracker and fixed tilt systems.

As photovoltaic systems age under relatively harsh and changing environmental conditions, several potential fault conditions can develop during the operational lifetime including corrosion of supporting structures and failures of polymeric materials. The ability to accurately predict the remaining useful life of photovoltaic systems is critical for plants ‘continuous operation. This research contributes to the body of knowledge of PV systems reliability by: (1) developing a meta-model of the expected service life of mounting structures; (2) creating decision frameworks and tools to support practitioners in mitigating risks; (3) and supporting material selection for fielded and future photovoltaic systems. The newly developed frameworks were validated by a global solar company.
ContributorsChokor, Abbas (Author) / El Asmar, Mounir (Thesis advisor) / Chong, Oswald (Committee member) / Ernzen, James (Committee member) / Arizona State University (Publisher)
Created2017
155632-Thumbnail Image.png
Description
Civil infrastructures undergo frequent spatial changes such as deviations between as-designed model and as-is condition, rigid body motions of the structure, and deformations of individual elements of the structure, etc. These spatial changes can occur during the design phase, the construction phase, or during the service life of a structure.

Civil infrastructures undergo frequent spatial changes such as deviations between as-designed model and as-is condition, rigid body motions of the structure, and deformations of individual elements of the structure, etc. These spatial changes can occur during the design phase, the construction phase, or during the service life of a structure. Inability to accurately detect and analyze the impact of such changes may miss opportunities for early detections of pending structural integrity and stability issues. Commercial Building Information Modeling (BIM) tools could hardly track differences between as-designed and as-built conditions as they mainly focus on design changes and rely on project managers to manually update and analyze the impact of field changes on the project performance. Structural engineers collect detailed onsite data of a civil infrastructure to perform manual updates of the model for structural analysis, but such approach tends to become tedious and complicated while handling large civil infrastructures.

Previous studies started collecting detailed geometric data generated by 3D laser scanners for defect detection and geometric change analysis of structures. However, previous studies have not yet systematically examined methods for exploring the correlation between the detected geometric changes and their relation to the behaviors of the structural system. Manually checking every possible loading combination leading to the observed geometric change is tedious and sometimes error-prone. The work presented in this dissertation develops a spatial change analysis framework that utilizes spatiotemporal data collected using 3D laser scanning technology and the as-designed models of the structures to automatically detect, classify, and correlate the spatial changes of a structure. The change detection part of the developed framework is computationally efficient and can automatically detect spatial changes between as-designed model and as-built data or between two sets of as-built data collected using 3D laser scanning technology. Then a spatial change classification algorithm automatically classifies the detected spatial changes as global (rigid body motion) and local deformations (tension, compression). Finally, a change correlation technique utilizes a qualitative shape-based reasoning approach for identifying correlated deformations of structure elements connected at joints that contradicts the joint equilibrium. Those contradicting deformations can help to eliminate improbable loading combinations therefore guiding the loading path analysis of the structure.
ContributorsKalasapudi, Vamsi Sai (Author) / Tang, Pingbo (Thesis advisor) / Chong, Oswald (Committee member) / Hjelmstad, Keith (Committee member) / Arizona State University (Publisher)
Created2017
Description
Regulatory agencies, such as the Occupational Safety and Health Administration (OSHA), and the National Institute of Occupational Safety and Health (NIOSH), recognize that decisions regarding occupational health are often economically driven, with worker health only a secondary concern (Ruttenberg, 2014). To investigate the four National Occupational Research Agenda (NORA) long-standing

Regulatory agencies, such as the Occupational Safety and Health Administration (OSHA), and the National Institute of Occupational Safety and Health (NIOSH), recognize that decisions regarding occupational health are often economically driven, with worker health only a secondary concern (Ruttenberg, 2014). To investigate the four National Occupational Research Agenda (NORA) long-standing health concerns—welding fumes, crystalline silica, noise, and musculoskeletal disorders—a mixed methods research is conducted. Fourfold structuration, a holistic communication process with roots in indigenous/ancient knowledge, is used to organize data and facilitate making tangible relationships of health to productivity and profits that are abstract and often stated by industries, such as construction, as difficult to quantify. From both construction trade worker and occupational health and safety expert interviews data/codes are developed. For the qualitative method, the codes are organized into a constructivist grounded theory depicting the construction industry with regard to its foundation – profits. A theoretical exercise translating the qualitative codes into potential productivity losses is presented as a way for quantifying the abstract relationships of health to productivity. For the quantitative study, the data/codes are used to develop a comprehensive list of practices, barriers to, and catalysts for addressing health in construction. A significant quantitative finding is that occupational health and safety (OSH) experts are not traditionally involved at the highest levels of the OSHA Hierarchy of Controls, where the greatest opportunity to prevent exposure to health hazards is possible. Organized via a holistic framework, this research emphasizes our primary responsibility to each other as highlighted in recent NIOSH worker health agendas.
ContributorsTello, Linda Marguerite (Author) / Grau, David (Thesis advisor) / Koro-Ljungberg, Mirka (Committee member) / Hanemann, Michael (Committee member) / Chong, Oswald (Committee member) / Arizona State University (Publisher)
Created2017
155812-Thumbnail Image.png
Description
Resilient acquisition of timely, detailed job site information plays a pivotal role in maintaining the productivity and safety of construction projects that have busy schedules, dynamic workspaces, and unexpected events. In the field, construction information acquisition often involves three types of activities including sensor-based inspection, manual inspection, and communication. Human

Resilient acquisition of timely, detailed job site information plays a pivotal role in maintaining the productivity and safety of construction projects that have busy schedules, dynamic workspaces, and unexpected events. In the field, construction information acquisition often involves three types of activities including sensor-based inspection, manual inspection, and communication. Human interventions play critical roles in these three types of field information acquisition activities. A resilient information acquisition system is needed for safer and more productive construction. The use of various automation technologies could help improve human performance by proactively providing the needed knowledge of using equipment, improve the situation awareness in multi-person collaborations, and reduce the mental workload of operators and inspectors.

Unfortunately, limited studies consider human factors in automation techniques for construction field information acquisition. Fully utilization of the automation techniques requires a systematical synthesis of the interactions between human, tasks, and construction workspace to reduce the complexity of information acquisition tasks so that human can finish these tasks with reliability. Overall, such a synthesis of human factors in field data collection and analysis is paving the path towards “Human-Centered Automation” (HCA) in construction management. HCA could form a computational framework that supports resilient field data collection considering human factors and unexpected events on dynamic job sites.

This dissertation presented an HCA framework for resilient construction field information acquisition and results of examining three HCA approaches that support three use cases of construction field data collection and analysis. The first HCA approach is an automated data collection planning method that can assist 3D laser scan planning of construction inspectors to achieve comprehensive and efficient data collection. The second HCA approach is a Bayesian model-based approach that automatically aggregates the common sense of people from the internet to identify job site risks from a large number of job site pictures. The third HCA approach is an automatic communication protocol optimization approach that maximizes the team situation awareness of construction workers and leads to the early detection of workflow delays and critical path changes. Data collection and simulation experiments extensively validate these three HCA approaches.
ContributorsZhang, Cheng (Author) / Tang, Pingbo (Thesis advisor) / Cooke, Nancy J. (Committee member) / Chong, Oswald (Committee member) / Arizona State University (Publisher)
Created2017