Matching Items (57)
Filtering by

Clear all filters

150025-Thumbnail Image.png
Description
With the increasing focus on developing environmentally benign electronic packages, lead-free solder alloys have received a great deal of attention. Mishandling of packages, during manufacture, assembly, or by the user may cause failure of solder joint. A fundamental understanding of the behavior of lead-free solders under mechanical shock conditions is

With the increasing focus on developing environmentally benign electronic packages, lead-free solder alloys have received a great deal of attention. Mishandling of packages, during manufacture, assembly, or by the user may cause failure of solder joint. A fundamental understanding of the behavior of lead-free solders under mechanical shock conditions is lacking. Reliable experimental and numerical analysis of lead-free solder joints in the intermediate strain rate regime need to be investigated. This dissertation mainly focuses on exploring the mechanical shock behavior of lead-free tin-rich solder alloys via multiscale modeling and numerical simulations. First, the macroscopic stress/strain behaviors of three bulk lead-free tin-rich solders were tested over a range of strain rates from 0.001/s to 30/s. Finite element analysis was conducted to determine appropriate specimen geometry that could reach a homogeneous stress/strain field and a relatively high strain rate. A novel self-consistent true stress correction method is developed to compensate the inaccuracy caused by the triaxial stress state at the post-necking stage. Then the material property of micron-scale intermetallic was examined by micro-compression test. The accuracy of this measure is systematically validated by finite element analysis, and empirical adjustments are provided. Moreover, the interfacial property of the solder/intermetallic interface is investigated, and a continuum traction-separation law of this interface is developed from an atomistic-based cohesive element method. The macroscopic stress/strain relation and microstructural properties are combined together to form a multiscale material behavior via a stochastic approach for both solder and intermetallic. As a result, solder is modeled by porous plasticity with random voids, and intermetallic is characterized as brittle material with random vulnerable region. Thereafter, the porous plasticity fracture of the solders and the brittle fracture of the intermetallics are coupled together in one finite element model. Finally, this study yields a multiscale model to understand and predict the mechanical shock behavior of lead-free tin-rich solder joints. Different fracture patterns are observed for various strain rates and/or intermetallic thicknesses. The predictions have a good agreement with the theory and experiments.
ContributorsFei, Huiyang (Author) / Jiang, Hanqing (Thesis advisor) / Chawla, Nikhilesh (Thesis advisor) / Tasooji, Amaneh (Committee member) / Mobasher, Barzin (Committee member) / Rajan, Subramaniam D. (Committee member) / Arizona State University (Publisher)
Created2011
151655-Thumbnail Image.png
Description
There are several visual dimensions of food that can affect food intake, example portion size, color, and variety. This dissertation elucidates the effect of number of pieces of food on preference and amount of food consumed in humans and motivation for food in animals. Chapter 2 Experiment 1 showed that

There are several visual dimensions of food that can affect food intake, example portion size, color, and variety. This dissertation elucidates the effect of number of pieces of food on preference and amount of food consumed in humans and motivation for food in animals. Chapter 2 Experiment 1 showed that rats preferred and also ran faster for multiple pieces (30, 10 mg pellets) than an equicaloric, single piece of food (300 mg) showing that multiple pieces of food are more rewarding than a single piece. Chapter 2 Experiment 2 showed that rats preferred a 30-pellet food portion clustered together rather than scattered. Preference and motivation for clustered food pieces may be interpreted based on the optimal foraging theory that animals prefer foods that can maximize energy gain and minimize the risk of predation. Chapter 3 Experiment 1 showed that college students preferred and ate less of a multiple-piece than a single-piece portion and also ate less in a test meal following the multiple-piece than single-piece portion. Chapter 3 Experiment 2 replicated the results in Experiment 1 and used a bagel instead of chicken. Chapter 4 showed that college students given a five-piece chicken portion scattered on a plate ate less in a meal and in a subsequent test meal than those given the same portion clustered together. This is consistent with the hypothesis that multiple pieces of food may appear like more food because they take up a larger surface area than a single-piece portion. All together, these studies show that number and surface area occupied by food pieces are important visual cues determining food choice in animals and both food choice and intake in humans.
ContributorsBajaj, Devina (Author) / Phillips, Elizabeth D. (Thesis advisor) / Cohen, Adam (Committee member) / Johnston, Carol (Committee member) / Bimonte-Nelson, Heather A. (Committee member) / Arizona State University (Publisher)
Created2013
151861-Thumbnail Image.png
Description
In October, 2009, participants of the Arizona Special Supplemental Nutrition Program for Women, Infants and Children (WIC) began receiving monthly Cash Value Vouchers (CVV) worth between six and 10 dollars towards the purchase of fresh fruits and vegetables. Data from the Arizona Department of Health Services (ADHS) showed CVV redemption

In October, 2009, participants of the Arizona Special Supplemental Nutrition Program for Women, Infants and Children (WIC) began receiving monthly Cash Value Vouchers (CVV) worth between six and 10 dollars towards the purchase of fresh fruits and vegetables. Data from the Arizona Department of Health Services (ADHS) showed CVV redemption rates in the first two years of the program were lower than the national average of 77% redemption. In response, the ADHS WIC Food List was expanded to also include canned and frozen fruits and vegetables. More recent data from ADHS suggest that redemption rates are improving, but variably exist among different WIC sub-populations. The purpose of this project was to identify themes related to the ease or difficulty of WIC CVV use amongst different categories of low-redeeming WIC participants. A total of 8 focus groups were conducted, four at a clinic in each of two Valley cities: Surprise and Mesa. Each of the four focus groups comprised one of four targeted WIC participant categories: pregnant, postpartum, breastfeeding, and children with participation ranging from 3-9 participants per group. Using the general inductive approach, recordings of the focus groups were transcribed, hand-coded and uploaded into qualitative analysis software resulting in four emergent themes including: interactions and shopping strategies, maximizing WIC value, redemption issues, and effect of rule change. Researchers identified twelve different subthemes related to the emergent theme of interactions and strategies to improve their experience, including economic considerations during redemption. Barriers related to interactions existed that made their purchase difficult, most notably anger from the cashier and other shoppers. However, participants made use of a number of strategies to facilitate WIC purchases or extract more value out of WIC benefits, such as pooling their CVV. Finally, it appears that the fruit and vegetable rule change was well received by those who were aware of the change. These data suggest a number of important avenues for future research, including verifying these themes are important within a larger, representative sample of Arizona WIC participants, and exploring strategies to minimize barriers identified by participants, such as use of electronic benefits transfer-style cards (EBT).
ContributorsBertmann, Farryl M. W (Author) / Wharton, Christopher (Christopher Mack), 1977- (Thesis advisor) / Ohri-Vachaspati, Punam (Committee member) / Johnston, Carol (Committee member) / Hampl, Jeffrey (Committee member) / Dixit-Joshi, Sujata (Committee member) / Barroso, Cristina (Committee member) / Arizona State University (Publisher)
Created2013
152439-Thumbnail Image.png
Description
As one of the most promising materials for high capacity electrode in next generation of lithium ion batteries, silicon has attracted a great deal of attention in recent years. Advanced characterization techniques and atomic simulations helped to depict that the lithiation/delithiation of silicon electrode involves processes including large volume change

As one of the most promising materials for high capacity electrode in next generation of lithium ion batteries, silicon has attracted a great deal of attention in recent years. Advanced characterization techniques and atomic simulations helped to depict that the lithiation/delithiation of silicon electrode involves processes including large volume change (anisotropic for the initial lithiation of crystal silicon), plastic flow or softening of material dependent on composition, electrochemically driven phase transformation between solid states, anisotropic or isotropic migration of atomic sharp interface, and mass diffusion of lithium atoms. Motivated by the promising prospect of the application and underlying interesting physics, mechanics coupled with multi-physics of silicon electrodes in lithium ion batteries is studied in this dissertation. For silicon electrodes with large size, diffusion controlled kinetics is assumed, and the coupled large deformation and mass transportation is studied. For crystal silicon with small size, interface controlled kinetics is assumed, and anisotropic interface reaction is studied, with a geometry design principle proposed. As a preliminary experimental validation, enhanced lithiation and fracture behavior of silicon pillars via atomic layer coatings and geometry design is studied, with results supporting the geometry design principle we proposed based on our simulations. Through the work documented here, a consistent description and understanding of the behavior of silicon electrode is given at continuum level and some insights for the future development of the silicon electrode are provided.
ContributorsAn, Yonghao (Author) / Jiang, Hanqing (Thesis advisor) / Chawla, Nikhilesh (Committee member) / Phelan, Patrick (Committee member) / Wang, Yinming (Committee member) / Yu, Hongyu (Committee member) / Arizona State University (Publisher)
Created2014
150697-Thumbnail Image.png
Description
The mechanical behavior of Pb-free solder alloys is important, since they must maintain mechanical integrity under thermomechanical fatigue, creep, and mechanical shock conditions. Mechanical shock, in particular, has become an increasing concern in the electronics industry, since electronic packages can be subjected to mechanical shock by mishandling during manufacture or

The mechanical behavior of Pb-free solder alloys is important, since they must maintain mechanical integrity under thermomechanical fatigue, creep, and mechanical shock conditions. Mechanical shock, in particular, has become an increasing concern in the electronics industry, since electronic packages can be subjected to mechanical shock by mishandling during manufacture or by accidental dropping. In this study, the mechanical shock behavior of Sn and Sn-Ag-Cu alloys was systematically analyzed over the strain rate range 10-3 - 30 s-1 in bulk samples, and over 10-3 - 12 s-1 on the single solder joint level. More importantly, the influences of solder microstructure and intermetallic compounds (IMC) on mechanical shock resistance were quantified. A thorough microstructural characterization of Sn-rich alloys was conducted using synchrotron x-ray computed tomography. The three-dimensional morphology and distribution of contiguous phases and precipitates was analyzed. A multiscale approach was utilized to characterize Sn-rich phases on the microscale with x-ray tomography and focused ion beam tomography to characterize nanoscale precipitates. A high strain rate servohydraulic test system was developed in conjunction with a modified tensile specimen geometry and a high speed camera for quantifying deformation. The effect of microstructure and applied strain rate on the local strain and strain rate distributions were quantified using digital image correlation. Necking behavior was analyzed using a novel mirror fixture, and the triaxial stresses associated with necking were corrected using a self-consistent method to obtain the true stress-true strain constitutive behavior. Fracture mechanisms were quantified as a function of strain rate. Finally, the relationship between solder microstructure and intermetallic compound layer thickness with the mechanical shock resistance of Sn-3.8Ag-0.7Cu solder joints was characterized. It was found that at low strain rates the dynamic solder joint strength was controlled by the solder microstructure, while at high strain rates it was controlled by the IMC layer. The influences of solder microstructure and IMC layer thickness were then isolated using extended reflow or isothermal aging treatments. It was found that at large IMC layer thicknesses the trend described above does not hold true. The fracture mechanisms associated with the dynamic solder joint strength regimes were analyzed.
ContributorsYazzie, Kyle (Author) / Chawla, Nikhilesh (Thesis advisor) / Sane, Sandeep (Committee member) / Jiang, Hanqing (Committee member) / Krause, Stephen (Committee member) / Arizona State University (Publisher)
Created2012
150754-Thumbnail Image.png
Description
This report will review the mechanical and microstructural properties of the refractory element rhenium (Re) deposited using Laser Additive Manufacturing (LAM). With useable structural strength over 2200 °C, existing applications up to 2760 °C, very high strength, ductility and chemical resistance, interest in Re is understandable. This study includes data

This report will review the mechanical and microstructural properties of the refractory element rhenium (Re) deposited using Laser Additive Manufacturing (LAM). With useable structural strength over 2200 °C, existing applications up to 2760 °C, very high strength, ductility and chemical resistance, interest in Re is understandable. This study includes data about tensile properties including tensile data up to 1925 °C, fracture modes, fatigue and microstructure including deformation systems and potential applications of that information. The bulk mechanical test data will be correlated with nanoindentation and crystallographic examination. LAM properties are compared to the existing properties found in the literature for other manufacturing processes. The literature indicates that Re has three significant slip systems but also twins as part of its deformation mechanisms. While it follows the hcp metal characteristics for deformation, it has interesting and valuable extremes such as high work hardening, potentially high strength, excellent wear resistance and superior elevated temperature strength. These characteristics are discussed in detail.
ContributorsAdams, Robbie (Author) / Chawla, Nikhilesh (Thesis advisor) / Adams, James (Committee member) / Krause, Stephen (Committee member) / Arizona State University (Publisher)
Created2012
151000-Thumbnail Image.png
Description
Gels are three-dimensional polymer networks with entrapped solvent (water etc.). They bear amazing features such as stimuli-responsive (temperature, PH, electric field etc.), high water content and biocompatibility and thus find a lot of applications. To understand the complex physics behind gel's swelling phenomenon, it is important to build up fundamental

Gels are three-dimensional polymer networks with entrapped solvent (water etc.). They bear amazing features such as stimuli-responsive (temperature, PH, electric field etc.), high water content and biocompatibility and thus find a lot of applications. To understand the complex physics behind gel's swelling phenomenon, it is important to build up fundamental mechanical model and extend to complicated cases. In this dissertation, a coupled large deformation and diffusion model regarding gel's swelling behavior is presented. In this model, free-energy of the total gel is constituted by polymer stretching energy and polymer-solvent mixing energy. In-house nonlinear finite element code is implemented with fast computational capability. Complex phenomenon such as buckling and healing of cracked gel by swelling are studied. Due to the wide coverage of polymeric materials and solvents, solvent diffusion in gels not only follows Fickian diffusion law where concentration map is continuous but also follows non-Fickian diffusion law where concentration map shows high gradient. Phenomenological model with viscoelastic polymer constitutive and concentration dependent diffusivity is created. The model well captures this special diffusion phenomenon such as sharp diffusion front and distinctive swollen and unswollen region.
ContributorsZhang, Jiaping (Author) / Jiang, Hanqing (Thesis advisor) / Peralta, Pedro (Committee member) / Dai, Lenore (Committee member) / Rajan, Subramaniam D. (Committee member) / Chawla, Nikhilesh (Committee member) / Arizona State University (Publisher)
Created2012
151236-Thumbnail Image.png
Description
With increasing concerns of the intrinsic toxicity of lead (Pb) in electronics, a series of tin (Sn) based alloys involving silver (Ag) and copper (Cu) have been proposed as replacements for Pb-Sn solder and widely accepted by industry. However, they have a higher melting point and often exhibit poorer damage

With increasing concerns of the intrinsic toxicity of lead (Pb) in electronics, a series of tin (Sn) based alloys involving silver (Ag) and copper (Cu) have been proposed as replacements for Pb-Sn solder and widely accepted by industry. However, they have a higher melting point and often exhibit poorer damage tolerance than Pb-Sn alloys. Recently, a new class of alloys with trace amount of rare-earth (RE) elements has been discovered and investigated. In previous work from Prof. Chawla's group, it has been shown that cerium (Ce)-based Pb-free solder are less prone to oxidation and Sn whiskering, and exhibit desirable attributes of microstructural refinement and enhanced ductility relative to lanthanum (La)-based Sn-3.9Ag-0.7Cu (SAC) alloy. Although the formation of RESn3 was believed to be directly responsible for the enhanced ductility in RE-containing SAC solder by allowing microscopic voids to nucleate throughout the solder volume, this cavitation-based mechanism needs to be validated experimentally and numerically. Additionally, since the previous study has exhibited the realistic feasibility of Ce-based SAC lead-free solder alloy as a replacement to conventional SAC alloys, in this study, the proposed objective focuses on the in in-depth understanding of mechanism of enhanced ductility in Ce-based SAC alloy and possible issues associated with integration of this new class of solder into electronic industry, including: (a) study of long-term thermal and mechanical stability on industrial metallization, (b) examine the role of solder volume and wetting behavior of the new solder, relative to Sn-3.9Ag-0.7Cu alloys, (c) conduct experiments of new solder alloys in the form of mechanical shock and electromigration. The research of this new class alloys will be conducted in industrially relevant conditions, and the results would serve as the first step toward integration of these new, next generation solders into the industry.
ContributorsXie, Huxiao (Author) / Chawla, Nikhilesh (Thesis advisor) / Krause, Stephen (Committee member) / Solanki, Kiran (Committee member) / Mirpuri, Kabir (Committee member) / Arizona State University (Publisher)
Created2012
151188-Thumbnail Image.png
Description
Unintentional falls among community dwelling older adults are a common, serious and potentially preventable public health problem. In the United States, the annual incidence of fall related injuries per 100,000 persons was 4,616 in 2001, rising to 5,252 in 2008. The annual incidence of fall related deaths per 100,000 persons

Unintentional falls among community dwelling older adults are a common, serious and potentially preventable public health problem. In the United States, the annual incidence of fall related injuries per 100,000 persons was 4,616 in 2001, rising to 5,252 in 2008. The annual incidence of fall related deaths per 100,000 persons was 29.3 in 2000, rising to 41.86 in 2006. Older adults are particularly vulnerable to falls as they age. Potential consequences include fractures, emergency room, hospital and nursing home admissions, dependence, confusion, immobilization, depression, and death. Significant modifiable fall risk factors include muscle weakness, gait problems, and balance problems. While researchers have demonstrated the positive effects of balance and leg-strengthening physical activities, the majority of older adults do not engage in them, and the rate of falls continues to increase. Older adults participate in regular physical activity and fitness activities less often than younger populations; disparities are greater among those who are poor and living in rural communities. While knowledge about causes, risk factors, and efficacious physical activity to prevent falls has grown exponentially in the last several decades, bridging the gap between research and practice continues to be a challenge. As a strategy to address the gap between research and practice, this feasibility study utilized a tested theory, the wellness motivation theory, to address motivation for behavioral change in combination with instruction for physical activities proven to reduce fall risk. The study sample included rural, community dwelling older adults at risk of falls. The study included an innovative mobile computer to measure physical activity behavior and to augment motivational content of the intervention. Specific aims of this feasibility study were to: (a) examine the acceptability, demand, and implementation of the wellness motivation intervention (WMI) as well as the technology augmenting the WMI; and (b) evaluate the efficacy of the WMI to influence awareness of social contextual resources, behavioral change processes, physical activity, and fall risk. The WMI delivered in combination with proven multicomponent balance and strength activities was feasible and effectively increased motivation for behavioral change (social support from friends, awareness of social contextual resources, behavioral change processes) and physical activity behavior, and decreased fall risk among rural, community-dwelling older adults at risk of falls in this study. This study is the first step in a program of research focusing on enhancing motivation for physical activity that reduces falls and frailty among older adults.
ContributorsMcMahon, Siobhan (Author) / Fleury, Julie (Thesis advisor) / Belyea, Michael (Committee member) / Shearer, Nelma (Committee member) / Wyman, Jean (Committee member) / Hekler, Eric (Committee member) / Arizona State University (Publisher)
Created2012
171769-Thumbnail Image.png
Description
Electromigration, the net atomic diffusion associated with the momentum transfer from electrons moving through a material, is a major cause of device and component failure in microelectronics. The deleterious effects from electromigration rise with increased current density, a parameter that will only continue to increase as our electronic devices get

Electromigration, the net atomic diffusion associated with the momentum transfer from electrons moving through a material, is a major cause of device and component failure in microelectronics. The deleterious effects from electromigration rise with increased current density, a parameter that will only continue to increase as our electronic devices get smaller and more compact. Understanding the dynamic diffusional pathways and mechanisms of these electromigration-induced and propagated defects can further our attempts at mitigating these failure modes. This dissertation provides insight into the relationships between these defects and parameters of electric field strength, grain boundary misorientation, grain size, void size, eigenstrain, varied atomic mobilities, and microstructure.First, an existing phase-field model was modified to investigate the various defect modes associated with electromigration in an equiaxed non-columnar microstructure. Of specific interest was the effect of grain boundary misalignment with respect to current flow and the mechanisms responsible for the changes in defect kinetics. Grain size, magnitude of externally applied electric field, and the utilization of locally distinct atomic mobilities were other parameters investigated. Networks of randomly distributed grains, a common microstructure of interconnects, were simulated in both 2- and 3-dimensions displaying the effects of 3-D capillarity on diffusional dynamics. Also, a numerical model was developed to study the effect of electromigration on void migration and coalescence. Void migration rates were found to be slowed from compressive forces and the nature of the deformation concurrent with migration was examined through the lens of chemical potential. Void migration was also validated with previously reported theoretical explanations. Void coalescence and void budding were investigated and found to be dependent on the magnitude of interfacial energy and electric field strength. A grasp on the mechanistic pathways of electromigration-induced defect evolution is imperative to the development of reliable electronics, especially as electronic devices continue to miniaturize. This dissertation displays a working understanding of the mechanistic pathways interconnects can fail due to electromigration, as well as provide direction for future research and understanding.
ContributorsFarmer, William McHann (Author) / Ankit, Kumar (Thesis advisor) / Chawla, Nikhilesh (Committee member) / Jiao, Yang (Committee member) / McCue, Ian (Committee member) / Arizona State University (Publisher)
Created2022