Matching Items (22)
Filtering by

Clear all filters

152014-Thumbnail Image.png
Description
Olfaction is an important sensory modality for behavior since odors inform animals of the presence of food, potential mates, and predators. The fruit fly, Drosophila melanogaster, is a favorable model organism for the investigation of the biophysical mechanisms that contribute to olfaction because its olfactory system is anatomically similar to

Olfaction is an important sensory modality for behavior since odors inform animals of the presence of food, potential mates, and predators. The fruit fly, Drosophila melanogaster, is a favorable model organism for the investigation of the biophysical mechanisms that contribute to olfaction because its olfactory system is anatomically similar to but simpler than that of vertebrates. In the Drosophila olfactory system, sensory transduction takes place in olfactory receptor neurons housed in the antennae and maxillary palps on the front of the head. The first stage of olfactory processing resides in the antennal lobe, where the structural unit is the glomerulus. There are at least three classes of neurons in the antennal lobe - excitatory projection neurons, excitatory local neurons, and inhibitory local neurons. The arborizations of the local neurons are confined to the antennal lobe, and output from the antennal lobe is carried by projection neurons to higher regions of the brain. Different views exist of how circuits of the Drosophila antennal lobe translate input from the olfactory receptor neurons into projection neuron output. We construct a conductance based neuronal network model of the Drosophila antennal lobe with the aim of understanding possible mechanisms within the antennal lobe that account for the variety of projection neuron activity observed in experimental data. We explore possible outputs obtained from olfactory receptor neuron input that mimic experimental recordings under different connectivity paradigms. First, we develop realistic minimal cell models for the excitatory local neurons, inhibitory local neurons, and projections neurons based on experimental data for Drosophila channel kinetics, and explore the firing characteristics and mathematical structure of these models. We then investigate possible interglomerular and intraglomerular connectivity patterns in the Drosophila antennal lobe, where olfactory receptor neuron input to the antennal lobe is modeled with Poisson spike trains, and synaptic connections within the antennal lobe are mediated by chemical synapses and gap junctions as described in the Drosophila antennal lobe literature. Our simulation results show that inhibitory local neurons spread inhibition among all glomeruli, where projection neuron responses are decreased relatively uniformly for connections of synaptic strengths that are homogeneous. Also, in the case of homogeneous excitatory synaptic connections, the excitatory local neuron network facilitates odor detection in the presence of weak stimuli. Excitatory local neurons can spread excitation from projection neurons that receive more input from olfactory receptor neurons to projection neurons that receive less input from olfactory receptor neurons. For the parameter values for the network models associated with these results, eLNs decrease the ability of the network to discriminate among single odors.
ContributorsLuli, Dori (Author) / Crook, Sharon (Thesis advisor) / Baer, Steven (Committee member) / Castillo-Chavez, Carlos (Committee member) / Smith, Brian (Committee member) / Arizona State University (Publisher)
Created2013
151575-Thumbnail Image.png
Description
A general continuum model for simulating the flow of ions in the salt baths that surround and fill excitable neurons is developed and presented. The ion densities and electric potential are computed using the drift-diffusion equations. In addition, a detailed model is given for handling the electrical dynamics on interior

A general continuum model for simulating the flow of ions in the salt baths that surround and fill excitable neurons is developed and presented. The ion densities and electric potential are computed using the drift-diffusion equations. In addition, a detailed model is given for handling the electrical dynamics on interior membrane boundaries, including a model for ion channels in the membranes that facilitate the transfer of ions in and out of cells. The model is applied to the triad synapse found in the outer plexiform layer of the retina in most species. Experimental evidence suggests the existence of a negative feedback pathway between horizontal cells and cone photoreceptors that modulates the flow of calcium ions into the synaptic terminals of cones. However, the underlying mechanism for this feedback is controversial and there are currently three competing hypotheses: the ephaptic hypothesis, the pH hypothesis and the GABA hypothesis. The goal of this work is to test some features of the ephaptic hypothesis using detailed simulations that employ rigorous numerical methods. The model is first applied in a simple rectangular geometry to demonstrate the effects of feedback for different extracellular gap widths. The model is then applied to a more complex and realistic geometry to demonstrate the existence of strictly electrical feedback, as predicted by the ephaptic hypothesis. Lastly, the effects of electrical feedback in regards to the behavior of the bipolar cell membrane potential is explored. Figures for the ion densities and electric potential are presented to verify key features of the model. The computed steady state IV curves for several cases are presented, which can be compared to experimental data. The results provide convincing evidence in favor of the ephaptic hypothesis since the existence of feedback that is strictly electrical in nature is shown, without any dependence on pH effects or chemical transmitters.
ContributorsJones, Jeremiah (Author) / Gardner, Carl (Committee member) / Baer, Steven (Committee member) / Crook, Sharon (Committee member) / Kostelich, Eric (Committee member) / Ringhofer, Christian (Committee member) / Arizona State University (Publisher)
Created2013
150698-Thumbnail Image.png
Description
Dendrites are the structures of a neuron specialized to receive input signals and to provide the substrate for the formation of synaptic contacts with other cells. The goal of this work is to study the activity-dependent mechanisms underlying dendritic growth in a single-cell model. For this, the individually identifiable adult

Dendrites are the structures of a neuron specialized to receive input signals and to provide the substrate for the formation of synaptic contacts with other cells. The goal of this work is to study the activity-dependent mechanisms underlying dendritic growth in a single-cell model. For this, the individually identifiable adult motoneuron, MN5, in Drosophila melanogaster was used. This dissertation presents the following results. First, the natural variability of morphological parameters of the MN5 dendritic tree in control flies is not larger than 15%, making MN5 a suitable model for quantitative morphological analysis. Second, three-dimensional topological analyses reveals that different parts of the MN5 dendritic tree innervate spatially separated areas (termed "isoneuronal tiling"). Third, genetic manipulation of the MN5 excitability reveals that both increased and decreased activity lead to dendritic overgrowth; whereas decreased excitability promoted branch elongation, increased excitability enhanced dendritic branching. Next, testing the activity-regulated transcription factor AP-1 for its role in MN5 dendritic development reveals that neural activity enhanced AP-1 transcriptional activity, and that AP-1 expression lead to opposite dendrite fates depending on its expression timing during development. Whereas overexpression of AP-1 at early stages results in loss of dendrites, AP-1 overexpression after the expression of acetylcholine receptors and the formation of all primary dendrites in MN5 causes overgrowth. Fourth, MN5 has been used to examine dendritic development resulting from the expression of the human gene MeCP2, a transcriptional regulator involved in the neurodevelopmental disease Rett syndrome. Targeted expression of full-length human MeCP2 in MN5 causes impaired dendritic growth, showing for the first time the cellular consequences of MeCP2 expression in Drosophila neurons. This dendritic phenotype requires the methyl-binding domain of MeCP2 and the chromatin remodeling protein Osa. In summary, this work has fully established MN5 as a single-neuron model to study mechanisms underlying dendrite development, maintenance and degeneration, and to test the behavioral consequences resulting from dendritic growth misregulation. Furthermore, this thesis provides quantitative description of isoneuronal tiling of a central neuron, offers novel insight into activity- and AP-1 dependent developmental plasticity, and finally, it establishes Drosophila MN5 as a model to study some specific aspects of human diseases.
ContributorsVonhoff, Fernando Jaime (Author) / Duch, Carsten J (Thesis advisor) / Smith, Brian H. (Committee member) / Vu, Eric (Committee member) / Crook, Sharon (Committee member) / Arizona State University (Publisher)
Created2012
168694-Thumbnail Image.png
Description
Retinotopic map, the map between visual inputs on the retina and neuronal activation in brain visual areas, is one of the central topics in visual neuroscience. For human observers, the map is typically obtained by analyzing functional magnetic resonance imaging (fMRI) signals of cortical responses to slowly moving visual stimuli

Retinotopic map, the map between visual inputs on the retina and neuronal activation in brain visual areas, is one of the central topics in visual neuroscience. For human observers, the map is typically obtained by analyzing functional magnetic resonance imaging (fMRI) signals of cortical responses to slowly moving visual stimuli on the retina. Biological evidences show the retinotopic mapping is topology-preserving/topological (i.e. keep the neighboring relationship after human brain process) within each visual region. Unfortunately, due to limited spatial resolution and the signal-noise ratio of fMRI, state of art retinotopic map is not topological. The topic was to model the topology-preserving condition mathematically, fix non-topological retinotopic map with numerical methods, and improve the quality of retinotopic maps. The impose of topological condition, benefits several applications. With the topological retinotopic maps, one may have a better insight on human retinotopic maps, including better cortical magnification factor quantification, more precise description of retinotopic maps, and potentially better exam ways of in Ophthalmology clinic.
ContributorsTu, Yanshuai (Author) / Wang, Yalin (Thesis advisor) / Lu, Zhong-Lin (Committee member) / Crook, Sharon (Committee member) / Yang, Yezhou (Committee member) / Zhang, Yu (Committee member) / Arizona State University (Publisher)
Created2022
190947-Thumbnail Image.png
Description
Non-invasive visualization of the trigeminal nerve through advanced MR sequences and methods like tractography is important for studying anatomical and microstructural changes due to pathology like trigeminal neuralgia (TN), facial dystonia, multiple sclerosis, and for surgical pre-planning. The use of specific anatomical markers from CT, MPRAGE and cranial nerve imaging

Non-invasive visualization of the trigeminal nerve through advanced MR sequences and methods like tractography is important for studying anatomical and microstructural changes due to pathology like trigeminal neuralgia (TN), facial dystonia, multiple sclerosis, and for surgical pre-planning. The use of specific anatomical markers from CT, MPRAGE and cranial nerve imaging (CRANI) sequences, enabled successful tractography of patient-specific trajectory of the frontal, nasociliary, infraorbital, and mandibular nerve branches extending beyond the cisternal brain stem region and leading to the face. Performance of MPRAGE sequence together with the advanced T2-weighted CRANI sequence with and without a gadolinium contrast agent, was studied to characterize identification efficiency in smaller nerve structures in the extremities. A large FOV nerve visualization exam inclusive of the anatomy of all trigeminal nerve distal branches can be obtained within an acquisition time of 20 minutes using pre-contrast CRANI and MPRAGE. Post-processing with MPR and MIP images improved nerve visualization.Transcranial electrical stimulation techniques (TES) have been used for the treatment of multiple neurodegenerative diseases. These techniques involve placing electrodes on the scalp with multiple peripheral branches of the trigeminal nerve crossing directly under that may be stimulated. This was studied through hybrid computational realistic axon models. These models also facilitated studying the effects of electrode drift during experiments on the recruitment of peripheral nerves. An optimal point of lowest threshold was found while displacing the nerve horizontally i.e., the activation thresholds of both myelinated and unmyelinated axons increased when the electrodes were displaced medially and decreased to a certain extend when the electrodes were displaced laterally, after which further lateral displacement led to increase of thresholds. Inclusion of unmyelinated axons in the modeling provided the capability of finding maximum stimulation amplitude below which side effects like pain sensation may be avoided. In the case of F3 – F4 electrode montage the maximum amplitude was 2.39 mA and in case of RS – LS montage the maximum amplitude was 2.44 mA. Such modeling studies may be useful for personalization of TES devices for finding optimal positioning of electrodes with respect to target and stimulation amplitude range that minimizes side effects.
ContributorsSahu, Sulagna (Author) / Sadleir, Rosalind (Thesis advisor) / Tillery, Stephen H (Committee member) / Crook, Sharon (Committee member) / Beeman, Scott (Committee member) / Abbas, James (Committee member) / Arizona State University (Publisher)
Created2023
190921-Thumbnail Image.png
Description
Sequence alignment is an essential method in bioinformatics and the basis of many analyses, including phylogenetic inference, ancestral sequence reconstruction, and gene annotation. Sequence artifacts and errors made in alignment reconstruction can impact downstream analyses, leading to erroneous conclusions in comparative and functional genomic studies. While such errors are eventually

Sequence alignment is an essential method in bioinformatics and the basis of many analyses, including phylogenetic inference, ancestral sequence reconstruction, and gene annotation. Sequence artifacts and errors made in alignment reconstruction can impact downstream analyses, leading to erroneous conclusions in comparative and functional genomic studies. While such errors are eventually fixed in the reference genomes of model organisms, many genomes used by researchers contain these artifacts, often forcing researchers to discard large amounts of data to prevent artifacts from impacting results. I developed COATi, a statistical, codon-aware pairwise aligner designed to align protein-coding sequences in the presence of artifacts commonly introduced by sequencing or annotation errors, such as early stop codons and abiological frameshifts. Unlike common sequence aligners, which rely on amino acid translations, only model insertion and deletions between codons, or lack a statistical model, COATi combines a codon substitution model specifically designed for protein-coding regions, a complex insertion-deletion model, and a sequencing base calling error step. The alignment algorithm is based on finite state transducers (FSTs), computational machines well-suited for modeling sequence evolution. I show that COATi outperforms available methods using a simulated empirical pairwise alignment dataset as a benchmark. The FST-based model and alignment algorithm in COATi is resource-intense for sequences longer than a few kilobases. To address this constraint, I developed an approximate model compatible with traditional dynamic programming alignment algorithms. I describe how the original codon substitution model is transformed to build an approximate model and how the alignment algorithm is implemented by modifying the popular Gotoh algorithm. I simulated a benchmark of alignments and measured how well the marginal models approximate the original method. Finally, I present a novel tool for analyzing sequence alignments. Available metrics can measure the similarity between two alignments or the column uncertainty within an alignment but cannot produce a site-specific comparison of two or more alignments. AlnDotPlot is an R software package inspired by traditional dot plots that can provide valuable insights when comparing pairwise alignments. I describe AlnDotPlot and showcase its utility in displaying a single alignment, comparing different pairwise alignments, and summarizing alignment space.
ContributorsGarcia Mesa, Juan Jose (Author) / Cartwright, Reed A (Thesis advisor) / Taylor, Jesse (Committee member) / Pavlic, Theodore (Committee member) / Ozkan, Banu (Committee member) / Arizona State University (Publisher)
Created2023
161970-Thumbnail Image.png
Description
The representation of a patient’s characteristics as the parameters of a model is a key component in many studies of personalized medicine, where the underlying mathematical models are used to describe, explain, and forecast the course of treatment. In this context, clinical observations form the bridge between the mathematical frameworks

The representation of a patient’s characteristics as the parameters of a model is a key component in many studies of personalized medicine, where the underlying mathematical models are used to describe, explain, and forecast the course of treatment. In this context, clinical observations form the bridge between the mathematical frameworks and applications. However, the formulation and theoretical studies of the models and the clinical studies are often not completely compatible, which is one of the main obstacles in the application of mathematical models in practice. The goal of my study is to extend a mathematical framework to model prostate cancer based mainly on the concept of cell-quota within an evolutionary framework and to study the relevant aspects for the model to gain useful insights in practice. Specifically, the first aim is to construct a mathematical model that can explain and predict the observed clinical data under various treatment combinations. The second aim is to find a fundamental model structure that can capture the dynamics of cancer progression within a realistic set of data. Finally, relevant clinical aspects such as how the patient's parameters change over the course of treatment and how to incorporate treatment optimization within a framework of uncertainty quantification, will be examined to construct a useful framework in practice.
ContributorsPhan, Tin (Author) / Kuang, Yang (Thesis advisor) / Kostelich, Eric J (Committee member) / Crook, Sharon (Committee member) / Maley, Carlo (Committee member) / Bryce, Alan (Committee member) / Arizona State University (Publisher)
Created2021
189255-Thumbnail Image.png
Description
\begin{abstract}The human immunodeficiency virus (HIV) pandemic, which causes the syndrome of opportunistic infections that characterize the late stage HIV disease, known as the acquired immunodeficiency syndrome (AIDS), remains a major public health challenge to many parts of the world. This dissertation contributes in providing deeper qualitative insights into the transmission

\begin{abstract}The human immunodeficiency virus (HIV) pandemic, which causes the syndrome of opportunistic infections that characterize the late stage HIV disease, known as the acquired immunodeficiency syndrome (AIDS), remains a major public health challenge to many parts of the world. This dissertation contributes in providing deeper qualitative insights into the transmission dynamics and control of the HIV/AIDS disease in Men who have Sex with Men (MSM) community. A new mathematical model (which is relatively basic), which incorporates some of the pertinent aspects of HIV epidemiology and immunology and fitted using the yearly new case data of the MSM population from the State of Arizona, was designed and used to assess the population-level impact of awareness of HIV infection status and condom-based intervention, on the transmission dynamics and control of HIV/AIDS in an MSM community. Conditions for the existence and asymptotic stability of the various equilibria ofthe model were derived. The numerical simulations showed that the prospects for the effective control and/or elimination of HIV/AIDS in the MSM community in the United States are very promising using a condom-based intervention, provided the condom efficacy is high and the compliance is moderate enough. The model was extended in Chapter 3 to account for the effect of risk-structure, staged-progression property of HIV disease, and the use of pre-exposure prophylaxis (PrEP) on the spread and control of the disease. The model was shown to undergo a PrEP-induced \textit{backward bifurcation} when the associated control reproduction number is less than one. It was shown that when the compliance in PrEP usage is $50%(80%)$ then about $19.1%(34.2%)$ of the yearly new HIV/AIDS cases recorded at the peak will have been prevented, in comparison to the worst-case scenario where PrEP-based intervention is not implemented in the MSM community. It was also shown that the HIV pandemic elimination is possible from the MSM community even for the scenario when the effective contact rate is increased by 5-fold from its baseline value, if low-risk individuals take at least 15 years before they change their risky behavior and transition to the high-risk group (regardless of the value of the transition rate from high-risk to low-risk susceptible population).
ContributorsTollett, Queen Wiggs (Author) / Gumel, Abba (Thesis advisor) / Crook, Sharon (Committee member) / Fricks, John (Committee member) / Gardner, Carl (Committee member) / Nagy, John (Committee member) / Arizona State University (Publisher)
Created2023
187847-Thumbnail Image.png
Description
A description of numerical and analytical work pertaining to models that describe the growth and progression of glioblastoma multiforme (GBM), an aggressive form of primary brain cancer. Two reaction-diffusion models are used: the Fisher-Kolmogorov-Petrovsky-Piskunov equation and a 2-population model that divides the tumor into actively proliferating and quiescent (or necrotic)

A description of numerical and analytical work pertaining to models that describe the growth and progression of glioblastoma multiforme (GBM), an aggressive form of primary brain cancer. Two reaction-diffusion models are used: the Fisher-Kolmogorov-Petrovsky-Piskunov equation and a 2-population model that divides the tumor into actively proliferating and quiescent (or necrotic) cells. The numerical portion of this work (chapter 2) focuses on simulating GBM expansion in patients undergoing treatment for recurrence of tumor following initial surgery. The models are simulated on 3-dimensional brain geometries derived from magnetic resonance imaging (MRI) scans provided by the Barrow Neurological Institute. The study consists of 17 clinical time intervals across 10 patients that have been followed in detail, each of whom shows significant progression of tumor over a period of 1 to 3 months on sequential follow up scans. A Taguchi sampling design is implemented to estimate the variability of the predicted tumors to using 144 different choices of model parameters. In 9 cases, model parameters can be identified such that the simulated tumor contains at least 40 percent of the volume of the observed tumor. In the analytical portion of the paper (chapters 3 and 4), a positively invariant region for our 2-population model is identified. Then, a rigorous derivation of the critical patch size associated with the model is performed. The critical patch (KISS) size is the minimum habitat size needed for a population to survive in a region. Habitats larger than the critical patch size allow a population to persist, while smaller habitats lead to extinction. The critical patch size of the 2-population model is consistent with that of the Fisher-Kolmogorov-Petrovsky-Piskunov equation, one of the first reaction-diffusion models proposed for GBM. The critical patch size may indicate that GBM tumors have a minimum size depending on the location in the brain. A theoretical relationship between the size of a GBM tumor at steady-state and its maximum cell density is also derived, which has potential applications for patient-specific parameter estimation based on magnetic resonance imaging data.
ContributorsHarris, Duane C. (Author) / Kuang, Yang (Thesis advisor) / Kostelich, Eric J. (Thesis advisor) / Preul, Mark C. (Committee member) / Crook, Sharon (Committee member) / Gardner, Carl (Committee member) / Arizona State University (Publisher)
Created2023
193430-Thumbnail Image.png
Description
Gene expression models are key to understanding and predicting transcriptional dynamics. This thesis devises a computational method which can efficiently explore a large, highly correlated parameter space, ultimately allowing the author to accurately deduce the underlying gene network model using discrete, stochastic mRNA counts derived through the non-invasive imaging method

Gene expression models are key to understanding and predicting transcriptional dynamics. This thesis devises a computational method which can efficiently explore a large, highly correlated parameter space, ultimately allowing the author to accurately deduce the underlying gene network model using discrete, stochastic mRNA counts derived through the non-invasive imaging method of single molecule fluorescence in situ hybridization (smFISH). An underlying gene network model consists of the number of gene states (distinguished by distinct production rates) and all associated kinetic rate parameters. In this thesis, the author constructs an algorithm based on Bayesian parametric and nonparametric theory, expanding the traditional single gene network inference tools. This expansion starts by increasing the efficiency of classic Markov-Chain Monte Carlo (MCMC) sampling by combining three schemes known in the Bayesian statistical computing community: 1) Adaptive Metropolis-Hastings (AMH), 2) Hamiltonian Monte Carlo (HMC), and 3) Parallel Tempering (PT). The aggregation of these three methods decreases the autocorrelation between sequential MCMC samples, reducing the number of samples required to gain an accurate representation of the posterior probability distribution. Second, by employing Bayesian nonparametric methods, the author is able to simultaneously evaluate discrete and continuous parameters, enabling the method to devise the structure of the gene network and all kinetic parameters, respectively. Due to the nature of Bayesian theory, uncertainty is evaluated for the gene network model in combination with the kinetic parameters. Tools brought from Bayesian nonparametric theory equip the method with an ability to sample from the posterior distribution of all possible gene network models without pre-defining the gene network structure, i.e. the number of gene states. The author verifies the method’s robustness through the use of synthetic snapshot data, designed to closely represent experimental smFISH data sets, across a range of gene network model structures, parameters and experimental settings (number of probed cells and timepoints).
ContributorsMoyer, Camille (Author) / Armbruster, Dieter (Thesis advisor) / Fricks, John (Committee member) / Hahn, Richard (Committee member) / Renaut, Rosemary (Committee member) / Crook, Sharon (Committee member) / Kilic, Zeliha (Committee member) / Arizona State University (Publisher)
Created2024